The ZOC Rexx Reference

(Using Regina Rexx in ZOC)

Version 3.7

Markus Schmidt
June, 2025

Based on “ The Regina REXX Interpreter” which isavailable
at the Regina home page at: http://regina-rexx.sourceforge.net

Origina Authors:

Mark Hessling <mark@rexx.org>
Florian GrolRe-Coosmann <florian@grosse-coosmann.de>

http://regina-rexx.sourceforge.net/
mailto:Anders.Christensen@idi.ntnu.no
mailto:Anders.Christensen@idi.ntnu.no

License:

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts.

A copy of the license isincluded in the section entitled "GNU Free Documentation License".

Authors/Copyrights:

Copyright © 1992-1998 Anders Christensen
Copyright © 1998-2008 Mark Hessling (http://regina-rexx.sour ceforge.net)
Copyright © 2008-2015 Markus Schmidt (http: //www.emtec.cony)

http://www.emtec.com/
http://regina-rexx.sourceforge.net/

Table of Contents

I =0 10
2 Introduction t0 ZOC'S REJINAREXX.........ccuieiieiierieeiesieesteesteseeseesseseesseesesseesseesssseessesssessesssesnsenns 12
2.1 PUrp0oSe Of thiS AOCUMIENL........cceiiieieie e et nes 12
A 0] 0 =T 1= 1 o o S 12
2.3 ZOC REXX EXLENSIONS.....ueiiiiiitiiiiiiiiiiie e ceitie e s st e s s e iaae e s s s sabaeessssbae e s sabbeessasabaeesssssenessannreeess 12
2.4 Executing Rexx programs With ZOC...........cooeeiieiecesece e 13
2.4.1 EXtErnal REXX PrOQIaIMS......cccueeuereerteeiesseessessesseessessessseessesssessesssessssssesssessessesssesnssssesses 13

3 REXX LaNQUAJE CONSITUCES.eeeeiiiieiiieesiee st sitee s siteessisesssse e snee e sseessase s sane e s snne e s snneessnnessnsneas 15
G I I 0 1< T 11 1o O RR 15
I LU e = TU = 16
G TR 0 017! 10 SR 18
TG T NS Lo 1011 | SRS 18
3.4 BaSiC REXX INSITUCLIONS.........uviiiiiiiiie i ieieiie e eitteee s e sitte e e e setsee s s sbbseasssabbeeessssssesssabbseesssssenssanns 20
G R I T2 A T [g {1 Tox £ o IO 22
I S I o TS O o I I 1 0 Tox o 22
3.4.3ThE DO/END INSLIUCHION.cciiviiiitiieietiie et e et e stee e stee s resesare s ssbeeesbeeesbeessaseessnreseanseeas 26
G Vo o I I 10 (T (o 29
345 The IF/THEN/ELSE INSITUCKION.ciiviiiceie ettt eetee et esbee s sve s sabe e e snaeeesnreeeas 30
3.4.6 THE ITERATE INSITUCION......eeiiiiiiiiii ittt ettt e b e s s eaa e s e bb e e e s s nbae e e s ennrns 31
4.7 ThE LEAVE INSIIUCHION. ...ttt ettt e s snbe e e snbe e e snree e nes 31
3.4.8 THE NOP INSITUCLION.eviiiiieeiie et cteee e eeite e et e e s st e e s s e bbe e e s ssabseeesssbaeessabbeeesssnsens 32
349 ThE NUMERIC INSITUCLION.veiiitiieiitiee ettt etee e eteeeeree e sares e esae s s e e sbe e e sbee s snbeeesnrees 32
3.4.10 The PARSE INSITUCLION.eeiiiiitiiie ettt esree e st e s s eba e e e s ssabae e e s esabsee s s sanbeeessansneeass 34
3.4.11 The PROCEDURE INSIIUCLION......ccuviiiitiiectie e ciee e cteecetee ettt e v sbee s s e s snreesenseesnes 36
3.4.12 The RETURN INSITUCKION.......uuiiiiiiriie e e cirtee s eeiteee s e sibree s s siraeessssaeeesssabsesessnsseessans 40
I R I o TSI N A 1 1 U1 (o 41
3.4.14 The SELECT/WHEN/OTHERWISE INStTUCHION.........ccoieireeirieceectee e 41
3.4.15 The SIGNAL INSLIUCHION......ciiviiictie ettt ettt e e s be e s snbe e s enaeessnreeeaneas 43
3.4.16 ThE TRACE INSLIUCHION. ...cciiiiiiiie ettt e et e s st e e s e e bae e s s s sabae e e s sbreeessanbaeeeeas 45
3.4.17 The UPPER INSEIUCHION......cciiiieictiie ettt et ce e setee s stressesaessss e s sbeessnbeessnbeeesnreeas 47
S5 AAVANCED INSETUCKIONS.......civeiie ittt s e e et e s et e e s ebb e e e s s eaba e e e s sabaeessanbbeeasssnraes 48
3.5. 1 THEADDRESS INSITUCHION......viiiitieeiteeecrieceteeeetescetreeeetreeseree e sbe e e sbee s sabesesabeeesnseessnreeeas 48
3.5.2 THE DROP INSLIUCHION......cccvtiie ittt eette et e it e e s e s e s s s saba e e s s ebbe e e s senbaeesssnrreas 54
3.5.3The INTERPRET INSLIUCHION......ccciviiiitiecetie ettt et e st svee e s e s e save e e snaeessnaeesaneeas 56
3.5.4 The OPTIONS INSITUCLION.eeiiiiiiiiiieceiiies e ccteie e et s etre e s st e e s s ebre e e s sssbaeessanbbeeesssnnnens 58
3.5.5 ThE PULL INSITUCHION......ciiivieiiiie et ceeeecettee et e et s e e e s sae e s sabe e s sabeessnbesssnaesesnseeennns 58
3.5.6 TNRE PUSH INSLIUCLION......cciitiiii ittt e b e e a e s s abb e e e s s aba e e s s ennees 59
3.5.7 The QUEUE INSITUCLION.........coiieiiieeiieeciee ettt st et e st esre s sreesreesreesareeebeesneesseesnneens 59
NG 0]= = (0] £ USSP URTOPPUTRTOR 60
3.6. 1 ArItNMELIC OPEIALONS......eceeveeieeeerteeeeseesteete st e steeaesseesreetesseesseeseesseesseenaesseesseenseaneensens 60
3.6.2 ASSIGNMENT OPEIALONS. .. .ccueeiueerieeieeieesteeeesieesteetesseesteseesaeesbeseesseesbeeseesseessesneesseensesneesees 60
3.6.3 COMPAaiVE OPEIALOIS.....c.veeeeereerieeieseesteeeesseesseeseesseesseaeesseesseesessseessesssesseessessesssesssenns 60
3.6.4 CoNCALENALi ON OPEBLOIS.......eiueeteeierieerieeieeseesteetesreeseeeeesseesteseesseessesssesseesseseesseessessnns 61
3.6.5 LOQICAl OPEIELOIS.....c.eeeeeiueeiieriesieesteseesseesteeseesteeseseesseessesseesseesesseesseensesseessesnsesseensennees 61

4 REXX BUIT-TN FUNCLIONS.......ouiiiiiiiiiie ettt ettt e st e s s s bte e e s s eaba e e e s sbbaeesssabaeessssreeeesanns 62
4.1 GENEIal INFOMMIBLION........eeiiiiiee et e e e e s b e e sabe e e sabe e e sabeeesabeeesnbeeeasrees 62
4.1.1 The SYNEAX FOIMEL......cuiiiiitiiierie ettt s be et e e b e e te s e e sseentesneenaeas 62
4.1.2 PreciSion and NOIMAlTIZAION.ccoivieiciie et ctee e eteeesves s e e sbae e ssbeeesbeessbeeesabeeeans 63
4.1.3 Standard Parameter NAIMES..........ceiiiiiiiiiiiiiiiee e eirre e s et e e s sbee s s s sbaeeessesbaeessssreeaeas 63

4.1.5 Possible System DePendENCIES.........couoviriirireiinieieee ettt 64
4.1.6 BlanKS VS, SPBCES.......eiiieeiiiecieesiie et stee ettt e et ste e s te et e e ae e be e sseeebeesseeeteesnaeereeaneeenreas 66
4.2 Regina BUilt-IN FUNCHIONS..........oiiiiiiiieierie sttt s 67
ABBREV(long, short [,1ength]) - (ANS).....oooiiece et 67
ABS(NUMDBET) = (ANSI)..eeee bbbttt b nrenne s 67
ADDRESS([0OPtION]) = (ANSI)...ueeieiesie sttt see e sre e sre s eneenees 67
ARG([argno [,0ptioN]]) = (ANS)...coeeieereere e 68
B2C(BINString) = (AREXX) ..o iieiitie ittt tes ettt sae e st e e be et e ebe e aneeeteesneeereennes 69
B2X(DINSING) = (ANSI)...eiiiieieeee ettt 70
BEEP(frequency [,duration]) = (OS/2)........ociiiiiieiie ettt 70
BITAND(stringl [,[string2] [,padchar]]) - (ANSI).....coiiriieeeeeee s 70
BITCHG(string, Dit) - (AREXX)....icieieieiesiesie sttt sse st e s sneeneenes 71
BITCLR(StrNG, Dit) - (AREXX)..cuiiiitiiieeieeieieie ettt st 71
BITCOMP(stringl, string2, bit [,pad]) - (AREXX)....coiviiieiesie et 71
BITOR(stringl [, [string2] [,padchar]]) - (ANSI)...c.coiiiirereeeee e, 71
BITSET(String, bit) - (AREXX)...cueiieieeiese ettt st ens 72
BITTST(String, bit) - (AREXX) ..ttt 72
BITXOR(stringl[, [string2] [,padchar]]) = (ANSI)....ccueoieeieeee e 72
BUFTYPE() = (CIMIS)....eiiieieeeee ettt ettt st sae s e ae e sseesseesaesneenteaneesseesseensessaensens 72
C2B(StriNg) = (AREXX) .cuteuieuieieieiiesiesiesiestestesiesesseeseesaesae s e stessessessesseensensessessessessessessessennens 72
C2D(String [,1eNgth]) - (ANSE) ..ceeiieeee e 73
(0% S (T Te) I (N NN £) TS 73
CD(dIreCtory) = (REGINA).....coiiiee ettt nesnesne e 74
CHDIR(AITeCtory) - (REGINA).......oeieee ettt sttt st enes 74
CENTER(string, length [, padchar]) = (ANSI)...ooooieeeeeeeeee e 74
CENTRE(string, length [, padchar]) = (ANSI)....ooiioie e 74
CHANGESTR(needle, haystack, newneedle) - (ANSI).....cocoiiiininineeeeee e 74
CHARIN([streamid] [,[start] [,Iength]]) = (ANS]) ..o 75
CHAROUT ([streamid)] [,[string] [,Start]]) - (ANSI)..ccooiriririeeeee e 76
CHARS([Streamid]) = (ANSI) ..ottt sne s 76
CLOSE(fI€) = (AREXX)...itiiteittsteriesiieeee ettt sttt sttt sb e st be bt nn et e snenae s 77
COMPARE(stringl, string2 [,padchar]) - (ANS]).....cooiiiiieie e 77
COMPRESS(SIriNg [,list]) = (AREXX) .ottt 77
CONDITION([OPLION]) = (ANSI) ..ottt ene e 77
COPIES(String, COPIES) = (ANSI).....oiieieieieresierer e 78
COUNTSTR(needle, haystack) = (ANS)....ccoiiieieiieieeie e 78
CRYPT(String, Salt) - (REGINA) ...ttt 78
DATATY PE(string [,0ptioN]) = (ANSI)....ve ettt 79
DATE([option_out [,date [,0ption_iNJ]]) = (ANSI)....coiiiieeeeeeee e 80
DELSTR(string, start [,1ength]) - (ANSI).....ooiieee e 82
DELWORD(string,start[,1ength]) (ANS]) ..o s 83
DS T L I (1Y S) S 83
1L I T (N)V TS 83
DIRECTORY ([new direCtory]) = (OS/2).....ccuueiieeee ettt 83
D2C(integer [,1ength]) - (ANSI) ..o e 84
D2X(integer [,1ength]) = (ANS]) ... 84
DROPBUF([NUMDEIT) = (CIMS)....ciiiiiieiesiesie sttt sttt 84
EOF(fIl€) = (AREXX) ittt se ettt st st be s e e seseenbesresneenenneenes 85
ERRORTEXT(errno [, 1ang]) = (ANS])...coieiieeeeeee et 85

EXISTS(FIENAME) - (AREXX)..vecrrreeveveeerreesesseeeessseesessessssssesssssssssssesssssssessessssesssssessssessesee 86

EXPORT (address, [string], [length] [,pad]) - (AREXX)...cciiiiiririneeeeeie s 86
FILESPEC(option, fIleSPEC) = (OS/2)....ccuuiiieeiie ettt 87
FIND(SEring, Phrase) - (CMS)......oouiiiiiiiieeeeeee sttt 87
FORK() = (REGINA) ..ottt sttt s tesbesteeseeseeseeneensentessessessesneens 87
FORMIU() = (ANSI). .ttt bbbttt b bbb b b enes 88
FORMAT (number [,[before] [,[after] [,[expp] [L.[eXPt]]]]]) - (ANS)..ccovveeeeeeeeee 88
FREESPACE(address, 1ength) - (AREXX) ..ot 89
A (N NN 1 TSSO 89
GETENV (environmentvar) - (REGINA) ... e 89
GETPID() = (REGINA)....ccte ittt sttt e ettt enaestestesseesesseeneeneensensensenes 89
GETSPACE(1ength) - (AREXX) ..ottt 90
GETTID() - (REGINA). ...ttt sttt e ntesbessesbeeneeneeneenean 90
HASH(SINNG) = (AREXX) ...ttt sttt 90
IMPORT (address [,1ength]) - (AREXX) ..ot see e 90
INDEX (haystack, needle [,Start]) - (CMS)......cooiiiiiiieeeeee e 90
INSERT (stringl, string2 [,position [,length [,padchar]]]) - (ANS])......ccoeivviiiiiiiceeeeeee, 91
JUSTIFY (string, length [,pad]) - (CMS)......oiiiiiiiieeee s 91
LASTPOS(needle, haystack [,start]) - (ANSI).....ooeeiiiececeece e 91
LEFT(string, length [,padchar]) = (ANS)....c.cooeeeeee s 92
LENGTH(SNG) = (ANSI)..ceiieieceeeeeeee ettt nesreene s e 92
LINEIN([streamid][,[lin€][,count]]) (ANSI).....cooririieeeree s 92
LINEOUT ([streamid] [,[string] [,IN€]]) = (ANS])..ccoveeiieiee e 93
LINES([streamid] [,0ption]) = (ANSI)......ooiiiiiiiiieeee s 9
LOWER(string [,start [,length [,pad]]]) - (REGINA).....ccoe it 95
MAKEBUFR() = (CIMS)... ittt ettt 95
MAX(numberd [,numbBer2] ...) = (ANS]) ..o 95
MIN(nUMber [,nUMDBEr] ...) = (ANS]) ..o e 96
OPEN(file, filename, ['Append’|'Read |WTrit€]) - (AREXX)...oiiiiiiirieierereeeeee e 96
OVERLAY (stringl, string2 [,[start] [,[length] [,padchar]]]) - (ANS)....ccoooeiiieiiiiiieree 96
POOLID() = (REGINA)....ccte ettt sttt st sttt se e e e e e neentesseseenseeneens 97
POPEN(command [,Stem.]) - (REGINA).....ccoiiiiririeieeeeere et 97
POS(needle, haystack [,Start]) - (ANSI).....oooiiiieie e 97
PUTENV (environmentvar=[valug]) - (REGINA)........ccoeiiiiiirerere e 98
QUALIFY ([streamid]) = (ANSI)...coeieeeeieieesese ettt see e s 98
QUEUED() = (ANSI) ..ttt sttt bbbttt e e e b nne s 98
RANDOM(MEX) = (ANSI)..eiieiieieieieese ettt st besresneeneeneenes 98
RANDOM(([min] [,[max] [,52ed]]) - (ANSI) ..o s 98
RANDU([SEA]) = (AREXX) e ittitietieieeieriesie st sie st eeee e sae st s be s saesaessessestesnessessesneeneens 99
READCH(file, [ength) - (AREXX) ..ottt 100
READLN(FIIE) = (AREXX) ... eeteiesiesiisiesieeiieeeiee e sie st ste e ssesseeaeseessestessessessessesseensessessessens 100
REVERSE(SIING) - (ANSI) ...ttt s 100
RIGHT (string, length[,padchar]) - (ANSI)......ooii i 100
RXFUNCADD(externalname, library, internalname) - (SAA).....cooovirerierieneenesesesenes 100
RXFUNCDROP(eXternalName) = (SAA) ... oottt stee st sta e sneeneas 101
RXFUNCERRMSG() - (REGINA). .. .ottt st 101
RXFUNCQUERY (eXternalName) = (SAA) ..ottt nse e sae e 101
RXQUEUE(command [,queueftimeout]) - (OS/2)......cccueurrienireninesiesesieee e 101
SEEK (file, offset, ['Begin'| Current’|ENd’) - (AREXX)...coiiiiiiineeeneereeie e 102
SHOW /(option, [name], [pad]) - (AREXX)....cc ettt 102

SIGN(MUMBEN) = (ANS]).-eevveeeeeeeeeeeeeeeseeesseeseeseessseessessessseesesssessssssesssessssesesseessseeeeeseees 102

SLEEP(SECONAS) - (CIMS).....eiiiiiiiiiiieiee ettt bbb 103
SOURCELINE([1NEN0]) = (ANSI)...eeeiieeieieiesiese ettt enens 103
SPACE(string][, [length] [,padchar]]) - (ANSI)..c.ooiiiiieeeeee e 103
STATE(Sreamid) = (CIMS).....ciiieiieeieeieeiesie ettt ssesresneeneenens 104
STORAGE([address], [string], [length], [pad]) - (AREXX)...c.cooiiiirirenenereeeeeesie e 104

STREAM (streamid[,option[,command]]) (ANSI).....ccceoiiiieieee e 104
STRIP(string [,[option] [,char]]) = (ANSI) ..o 108
SUBSTR(string, start [,length [,padchar]]) - (ANSD)......oooeiiieeceee e 109
SUBWORD(string, start [,1ength]) - (ANSI)....c.ooiiiieeeseeeeee e 109
SYMBOL(NAME) = (ANSI)..eiiieiieiieeieieieieiere sttt st enseneesaesnesnen 110
TIME([option_out [,time [0ption_iNJ]]) = (ANS])..ccoieeereeeee s 110
TRACE([SEtiNG]) = (ANSI). .ot st e e e sne et neene e 112
TRANSLATE(string [,[tableout] [,[tablein] [,padchar]]]) - (ANS])...cocoviriiieereee 112
TRIM(SINNG) = (AREXX) e tiitiitieieeieiesiesiesie sttt sttt se e e e tessesbesaesneeseeneenes 112
TRUNC(number [,1ength]) = (ANSI) ..o 113
UNAME([0ption]) = (REGINA) ...ttt st sae s e s 113
UNIXERROR(ETOrNO) - (REGINA). ...t 114
UPPER(string [,start [,length [,pad]]]) — (AREXX/REGINA)......ccecueirieieene e 114
USERID() = (REGINA).....ce et eteseee ettt st ste e e teete e sseeeesseesseeneesseesseensesseessennensses 114
VALUE(symbol [,[valug], [POOI]]) = (ANSI)....oooeeieeeeee e 115
VERIFY (string, ref [,[option] [,Start]]) = (ANSI)..c.coeiieeeeeeseeeee e 115
WORD(string, Wordno) = (ANSI) ..ot 116
WORDINDEX(string, Wordno) = (ANSI)......ccoiiiiiiininereeese s 116
WORDLENGTH(string, wordno) = (ANSI)......oooioiciece e 116
WORDPOS(phrase, string [,Start]) - (ANS])....ooo oo 117
WORDS(SIHNG) = (ANS) ettt ssesbesresneereeneenes 117
WRITECH(file, String) = (AREXX) .coeeieceeie et siesee e eee st ae et enee e ssn e sse e e snee e 117
WRITELN(file, String) = (AREXX) .ueieitieieieieierie ettt eneeneas 117
XRANGE([start] [,end]) = (ANS]) ..o 118
X2B(exstring) = (ANSI)....ooo et et eebe e s re e s reesreeereens 118
X2C(NEXSIING) = (ANS]) ...ttt et e b nre s 118
X2D(hexstring [,1ength]) = (ANS]) ..o 118
4.3 Implementation specific documentation fOor REQINGL...........ccvereririeiienesese e 120
4.3.1 Deviations from the Standard.............ocooeeiiieienee e 120
4.3.2 Interpreter Internal Debugging FUNCLIONS..........cccciiiiiienereie e 120
ALLOCATED([OPLION]).cteeueereeneeiesiesiesiestessessesseeeeseessessessessessessessessesssssssssessessessessessessessenns 120
D10 I SRS 121
DUMPVARS().... e eveeteetieieiesiesie st stesseaseeeeseessestestessessessesseessesessessessessessessessssnssssessessessessenses 121
LISTLEAKED() veteiveiteetieiteeeiet et te sttt sttt ettt saestestesaesseesaesaeseensensessessesnessesneeneaneas 121
TRACEBA CK () tttttttteteeteeieeesiestesteste e stessesseseeseesaessestessessesseesesseessessessessessessessessessessenennss 121
4.3.3 REXX VMS Interface FUNCLIONS.........ccoviieice et 122

5 ZOC REXX EXIENSIONS.....ccuiiieieiesiesiesiesieeseeieseesaestestessessessessesssessessessessessessessessesssensessessessessenses 124
5.1 ZOC-REXX Commands/FUNCLIONS OVEIVIEW..........ccueeeeiierieeieseesieseeseeseeseesseesseseesseensens 124
5.2 ZOCASK([<EIIE> [, SPIrESELS]])..vveireeirieiie ettt et s re e 124
5.3 ZOCASKPaSSWOIA([SETIES]).....eeeiieiiiriesiieereee e 125
5.4 ZocAskFilename(<title> [, <preselected fIl€>]).....ccccviiiiiiiiie e 125
5.5 ZocAskFilenames(<title> [, <preselected file> [, <delimiter>]]).....ccccovvininineninincnennns 125
5.6 ZocAskFoldername(<title> [, <preselected folder>])......ccooriiininnneeeee, 126
5.7 ZOCBEED [SNS] ittt bbbt b bbbt 126

5.8 ZocClipboard <subcommand> [, SWILESIINGS].....cccveiiiiiierie e 126

e I oo O = 0o = = o PSR 127
5.10 ZocCommand <SUBCOMMEANG>...........coiiiiiiieiee et 127
5.11 ZOCCONNECE [SAAAINESSS].....eeiuiiiieiieiieierie ettt bbbttt be e b naeas 127
5.12 ZocConnNeCtHOSLAITENLIY SNAIMES........ccoiiieiiie et s ree 128
5.13 ZOCCHTSIING(SIEXES)....c.eeeiiesiesieeieeee ettt e 129
5.14 ZocDdeClient [(<channel>,] <subcommand> [, <parameters>]........ccccccvvveviecceeieesineens 129
5.15 ZOCDE QY [KSECS]...ciiiiiitieie sttt este et sttt s te b s teeseese e s e s e sentesreasesreeneeneens 130
5.16 Z0oCDeVICeCONLIOl SSLING>.....ccoiiiiieieiece ettt e e r e e e sreeennas 130
5.17 ZocDia og <subcommand> [, SParamMELer=]........cccceerierrirriereresesesesesee e 130
5.18 ZOCDISCONNECL......c.eeiueeiuieieeee sttt sttt st sbe e te e e e sbe et e sneesbeeseeneesneeneeeneenes 131
5.19 ZocDownload(<protocol>[:<options>], <file Or dir>)........ccccceveriiirieninineeeeeee 132
5.20 ZocDoString(<COMMANASIIING™).....ccuviiiieiieciiee et see et e e sre e sse e sreesreesnee s 132
5.21 ZocEventSemaphore(<subcommand>[, <SIgNal-id>])......cccocereririienininieeeesese e 133
5.22 ZocFilename(<command>[, <OPLIONS>])....ceciiiiiieiiiiiie e 134
5.23 ZocFileCopy(<source filename>, <AeStNAIONS)........cccooeierenirineeieee e 135
5.24 ZOCHI | eDelete(<TIHENAIMES)......ccei et 135
5.25 ZocFileRename(<oldname>, SNBWNEMES)........ccoiririrerieiene e 135
5.26 ZoCGEtHOSENtIy (SNAME>, SKEY™>)....coiiiiieiecieiie sttt sttt sne e 136
5.27 ZOCGELINFO(SWHEES)......eveciieiieie ettt nn bbb 136
5.28 ZocGetProgramOPLiON(SKEYS)......ccoiiiiicieciecee ettt 138
5.29 ZocGetScreen(<x>,<y>,<len>) or ZocGetScreen(” <aliaS>").....ccocvevererieeieiniesese e 139
5.30 ZocGetSessiONOPLION(SKEYS).....ccueiiiieiie ettt esaeeraeesaaeeree s 140
5.31 ZocGlobal Store(<operation>, [<OPLIONSS])....cvverireriiriieriere e 140
5.32 ZocK eyboard(<command> [, LIMEOULES]).....ccueiiiieiieiiee et 141
5.33 ZOCLASILINE(). .ttt e bbb nne s 141
5.34 ZocListFiles(<path\mask> [, KSEPArator=>])........ccccuevuerieieireeeereceereeeeeeee e 142
5.35 ZocL ocadK eyboardProfile [SZKYTIHES] ..o 143
5.36 ZocL oadSessionProfile <OPLSIlE>........oooiiiicie e 143
5.37 ZocLoadTrangd ationProfile [SZITIlES] ..o 143
5.38 ZocMath(<function>, <arg>[, <Arg2>])....ccccerieiiieiie ettt snee s 143
5.39 ZocMenuEvent <menu text™> [, <FIES] ..o 143
5.40 ZocM essageBoX(<teXt™ [, KMOUES]).....iiiuieiieiiiecie ettt 144
5.41 ZOCNOLtify <text> [, KAUrAtiONS]........oiiiiiiriesienieeeeee e 144
5.42 ZocPing (<ip-or-hostname>, <tIMEOULS].........cccveiiieiiiiiie e 144
5.43 ZOCPIaySOUNT STITE> ..o et e 145
5.44 ZocRecel VEBUF(SDUFFEI SIZE>).......ooiiicie e 145
5.45 ZocRegistry(<subcommand>[, <OPLIONSS]).....cceririririririeieriesie et 146
5.46 ZocRequest(<title>, <opt1> [, <Opt2> [, KOPL3>]])eecvececrieieiiieieciece e 147
5.47 ZocRequestList(<title>, <OPtL> [, ...]]) e eevererereeieiese e 148
5.48 Z0oCReSPONd <EEXTLS [, SLEXIZ>]....oicciie ettt sttt e b eene e 148
5.49 Z0cSaveSessiONProfile [SOPLSFHTES] ..o s 149
5.50 ZOCSENU SEEXES......eeeeieeeieeie ettt sttt b et st e s b e s b e e meesbeenbesneesreenaeennens 149
5.51 ZocSendEmulationKey <KEYNAIMES..........cccoiiiiiiiieieiee e 150
5.52 Z0CSENARAW <AALASIIING ™.c.veeiiieciie ettt sre e et e b e e snreereesnne e 150
5.53 ZocSess onTab(<subcommand>, <KParamMELErS>)........ccovvverirerinieieeee e 151
5.54 ZocSetAuditLogname <filename>............cccuv i 154
5.55 ZOCSEAUIOACCEPE L|0.....euiiieiiieiieieiesieste sttt sttt sttt 154
5.56 ZocSetCursorPOS <row=>, <COIUMNS.........ooiiiiiieieeie e 155
5.57 ZocSetDevice <name> [, <COMMPAM-SLHING>] ...cvveuvcieierierece et 155

5.58 ZocSetDeviceOpts <parameter-StHiNg>........cciii e et 155

5.59 ZocSetEmulation <emulationname> [, <emuparm-string>]........c.ccoovvereririenieeneneseseniens 156
5.60 ZocSetHostENntry "name", "<key>=<ValUE>"...........ccccooeeiie it 156
5.61 ZocSetL ogfileName <fIlenamE>............oooiiiiiiniiee e 157
5.62 ZOCSEIL OGGING OfL [,1] - ueeveemeerreereeeeesieesieeiesteestesee st e s e bt sseesreenaesneesreeeesnee e 157
5.63 ZoCSetMOde <KeY>, KVAIUES..........cooiee ettt nne e 157
5.64 ZocSetProgramOption "<KeYy>=<ValUES" ...t 158
5.65 ZocSetScriptOutputDestination "DEFAULT|DATASTREAMBROWSER|
e I s] 1= 7= o =TRSO 158
5.66 Z0CSetSessionOption "<KEY>=<VEIUES" ..o 159
5.67 ZoCSETIMEr <KNNIMIMISS> ... et ne s 159
5.68 ZoCSEtUNATENAEA O[L.......ccuiiiiiiirieieieriesie ettt sttt se b naeas 159
5.69 ZocShell <command=>, [SVIEWMOAES]........coiiiiiiiiiecie e 160
5.70 ZocShellExec <command>[, KVIEWMOAES].........ceourirrirriereriene st 160
5.71 ZocShellOpen <fIlENamMIE>..........cooii ittt sbe e sa e nree 160
5.72 ZocString(<subcommand>, <inputstring>, <p1> [, <P2>]).eccvevieerienienieeneeeseere e 161
5.73 ZOCSUPPIESSOULPUL OfL..... ettt se et sre e e e sneeneas 163
5.74 ZOCSYNCHIME SEUIMES......ocuiiiiiiiiieie ettt bbbttt b et sb e b e naeene e e eneas 163
5.75 ZoCTerminate [<IEtUrN-COUES].....ccuiiiiiiie ettt e s 164
5.76 ZOCTIMEOUL SSEC......uieuieieiesiieieeseesteetesseesseessesseesseesesseesseessesssesseessesssssseessessessseesseseessennes 164
5.77 ZocUpload <protocol>[:<options>],<path/filename>............ccccovveiiiiiciecce e 164
5.78 ZOCWAIT(SIEXES).....ve ettt sttt st ste b e e seeseene e e et e seseesresneeneeneeneens 166
5.79 ZocWaitForSeq 10| On" [Off" ...t e 167
5.80 ZOCWaAITIAIE(SEUIMES).....cuiiiciececececee ettt et esaestesnennenneas 168
S A ool VAV = L (T = TSP 168
5.82 ZoCWaitMUX(<EEXTO> [, SLEXTL> ...])ccreirieie ittt s ene s 169
5.83 ZOCWaItNUMCRNAIS(SN>).....uiiiiiccie ettt st et ste e e s neesneesnneens 170
5.84 ZocWindowState(MINIMIZEIMAXIMIZE|RESTORE|JACTIVATE|[MOVE:X,y|QUERY)
... 170
5.85 ZOCWIITE SEEXES.....cueeieciieieeieseesie et e e ee e ste e st esteeeesseeseeseesseenteensesseenseeneenseensenneens 171
5.86 ZOCWITEIN SEEXES ..ottt sttt et b e e e sre e a e et e eneenneas 171
6 Stream INPUE 8N OULPUL. ..ottt e bbb saesbesne e ene s 172
6.1 Background and Historical REMArkS...........couviiiiiiiiiie e 172
6.2 REXX'SNOUON Of @ SErEAMN.......eciiieeiiieie ettt ae et aeeaesnaesseenaenneens 172
6.3 SNOI Crash-COUISE.........oiuieierieiiee ettt st ae et et e bt e nbe et e sree b e enee e 173
6.4 NAMING SIIEAIMIS.......coiiieitiite sttt sttt ettt et e sae s b e s b e e st e ae e e et e b e besbesbesneeneeneens 174
6.5 Persistent and TranSieNt SEFEAMS........cceeuiiiiieeie et n e s sre e 177
6.6 OPENING @ SITEAIM......ciuiiiieiiiieite ettt bbbttt et et et sbesbeeb e e st e e e e e s e saesbenbeas 178
6.7 ClOSING @ SIIEAM.......eiiiie ettt e et e e s e e e beesaeeeseesseeenbeesseeanseenneeenseenns 179
6.8 Character-wise and LIiNE-WISE I/O........ccu ettt snee s 179
6.9 ReadiNg @nd WIITING........eeiieiieeiie ettt st e e s s e et e e sreeeaeesneeenneas 181
6.10 Determining the CUrrent POSITION..........c.oiiiiiirieieee e 183
6.11 PoSItioNiNg WIthiN @ FI€........coouiiiie ettt et sne s 184
6.12 Errors: Discovery, Handling, and RECOVENYc.ooiiiiieiiiese s 187
6.13 Common Differences and Problems with Stream [/O..........ccccoooiiriiiiiieeeeee 188
6.13.1 Where Implementations are Allowed to DIffer........ccoceviiinininiciiiesee e 188
6.13.2 Where Implementations might Differ anyway..........ccccoceevieiiieiie s 189
6.13.3 LINES() and CHARS() &€ INGCCUIELE..........cccureeieieriesie et 189
6.13.4 The Last LiNe Of @ SLrEAM.........cooiiiieeee ettt e 191
6.13.5 Other Parts Of the 1/0 SYSIEM.......cccooiiiiieee e 191

6.13.6 Implementation-Specific INfFOrMation............cceeiieie e 192

6.13.7 Stream [/O IN REGINA 0.078.......coieiiiiie et 192
6.13.8 Functionality to be Implemented Later............cccoeeiieiiiciieiie e 195
6.13.9 Stream [/O INAREXX L.15.......ccoeieeieeeseerie e see e eae e ste e sneesseeaesseesseeeesneesseenseens 195
6.13.10 Main Differences from Standard REXX..........cccoiiiiiniiiinieneee e 200
6.13.11 Stream [/O iN BREXX 1.0D.......cciiiiiieeiee e ee e nee s 201
6.13.12 Problems with Binary and Text MOES...........cccviiieiiiiiie i 205

A T 15 T 0 USRS 207
7.1 WhY HaVe EXLENSIONS......cociieiiiiiieeitie st stee et ste et ee b st e e te e saa e e seesneeenbeesnaeeneesnneenreas 207
7.2 ZOC REXX EXLENSIONS......cciuieiieiesiiesieeeesseesseeeesseessesseesseessessesssesssesssesseesssssssssesssessssssenssens 207
7.3 Extensions and Standard REXX.........cooiiiiiiiie et 207
7.4 Specifying EXtENSIONS iN REJINGL........coiiiiirieieiere e 208
7.5 The TrOUDIE BEUINS.......ccueeiieectie ettt ettt et e s e b e sne e e te e sneeeseesnneenreas 208
7.6 The Format of the OPTIONS ClAUSE.........cocieieiiesieeie et ee e sae e s nae e 209
7.7 The Fundamental EXIENSIONS........ccoiiiiiriiiieieeie ettt 209
7.8 MELBEXIENSIONS.......eeveeieeeieeieesieeee st e steeeesse e teeseesreesaeeseesseesseeseesseenseeseeaseenseanensseensesnenasennsnns 213
7.9 SEMI-STANUAITS. ..ottt e b e et e et e s bt e nbe et e sreeneeenee e 213
8 OIS 70 = o PSSR 213

8 IMPIEmMENLAiON LiMITS......ccuiiiiieiie e et e e be e s nneereesnne e 215
B.LWHY USE LIMITS?.... ittt e s te e s seeaeeneesseensesneesseenseenennsens 215
8.2What LimMItST0 CROOSE?.......coiuieieiiiiieeieeie ettt sttt s ae e sneeeas 215
8.3 REQUITEA LIMITS.....itiiuieiieieieite ettt sttt sttt bbbttt e b et sbenbenne s 215
8.4 Older (OBSOIELE) LIMILS......ccueiiiieiiiecieeiiie ettt ee et sra e b e snaeereeenne e 216
8.5 What the Standard dOBS NOL SAYcoerieriiririninieeeeerte st 217
8.6 What an Implementation iSAIlowed tO "IgNOre"...........cooveiiviiie s 218
8.7 LIMITSTN REGINGL. ...c.eeiieeiieeeie ettt b et e e e b et b b 218

S AN o]0 00 [(- OSSPSR 220
0.1 DEFINITIONS.......eiieeeieeie et ee ettt e e st e e ee s e te et e sseesse e seeseesseenseeseesseesnenensseensennenssennsennenns 220

S I = T o [0o ="] o 2SR 224
9.3 GNU Free DoCUMENtatioN LICENSE.........civeriieiesierieeieseesieeeesseesteeeesseesseeseesseessesnsesseessesnees 226

1 Preface

This document is based on The Regina REXX Interpreter by Anders Christensen and Mark
Hessling. 1n accordance with the document's license | am the author of this document, but in reality
| have done little to earn thistitle. | am seeing myself merely as an editor.

In fact the text of this book is mostly identical with the original version, although some parts have
been moved or removed in order to make it more consistent with the intended use. Thisintention is
to provide an introduction to Rexx for users of our terminal product ZOC.

This product uses the Regina REXX interpreter as a scripting solution and it's users will have a
different background and will approach REXX differently than the intended audience of the original
book.

The full Regina Rexx interpreter isavery powerful tool, intended to serve the same basic purpose
as other shell scripting languages like Perl, Python, etc. Some parts of this text will till reflect this.
However, | would like to ask the readers to bear with possible inconsistencies and shortcomings.
Writing text is not a strength of mine and English is not my native language, but | hope that overall
this book it will still be of good value as an introduction, overview and reference about the Rexx
language

Last but not least | would like to thank the origina authors for their excellent work and for
providing the book under this license.

Markus Schmidt

Note: The original book and fully featured REXX interpreter are available at http://regina-
rexx.sourceforge.net and both are highly recommend for anyone who isinterested in using REXX
beyond the scope of our ZOC product.

10

http://regina-rexx.sourceforge.net/
http://regina-rexx.sourceforge.net/

11

2 Introduction to ZOC's Regina Rexx

This chapter provides an introduction to Regina, an Open Source Rexx Interpreter distributed
under the GNU General Library License.

2.1 Purpose of this document

The purpose of this document isto provide afairly complete reference of the Regina REXX
language as used with the ZOC terminal product.

For starters, aquick and easy introduction to REXX has been provided in the ZOC help file, which
you should read first. Also thereisawealth of REXX tutorials available on the internet..

This book is intended as a reference manual to provide all the details which the intro in the ZOC
help file sacrificed for simplicity and to fill the gaps.

2.2 Implementation

The Regina Rexx Interpreter isimplemented as alibrary suitable for linking into third-party
applications. Accessto Regina from third-party applicationsisviathe Regina API, whichis
consistent with the IBM's REXX SAA API. ThisAPI isimplemented on most other Rexx
interpreters.

The library containing Regina is added to ZOC as a dynamically loadable library, which ZOC
loads at runtime. Thislibrary consists all the regular features from Regina, although many do not
apply in the context of using Rexx from within ZOC. Description of features which do not apply to
using Rexx in ZOC has been removed from this book.

2.3 Z0OC REXX Extensions

In addition to the original Regina REXX language elements described here, ZOC extends the
language with commands to perform tasks related to terminal emulation. From the perspective or
REXX those are a 3 party library and they are described in chapter 5. (The documentation for the
ZOC specific commands can aso be found in the help menu of the ZOC program under ZOC Rexx
commands).

12

2.4 Executing Rexx programs with ZOC

Rexx programs are generally executed by Regina from the ZOC menu or through the ZOC
command line or associated with Host directory entries.

The Rexx programs are usually stored in files with the .ZRX extensions are loaded into memory
and passed to the Rexx interpreter for execution.

2.4.1 External Rexx programs

A Rexx program can execute other Rexx programs through the CALL command.

Regina searches for Rexx programs, using a combination of the REGINA_MACROS
environment variable, the PATH environment variable, the REGINA_SUFFIXES environment
variable and the addition of filename extensions. This rule appliesto both external function calls
within a Rexx program and the program specified on the command line.

First of all we process the environment variable REGINA_MACROS. If no fileisfound we
proceed with the current directory and then with the environment variable PATH. The semantics of
the use of REGINA_MACROS and PATH are the same, and the search in the current directory is
omitted for the superuser on Unix systems for security reasons. The current directory must be
specified explicitly by the superuser.

When processing an environment variable, the content is split into the different paths and each path
is processed separately. Note that the search algorithm to this point isignored if the program name
contains afile path specification. eg. if "CALL \MYPROG" is called, then no searching of
REGINA_MACROS or PATH isdone; only the concatenation of suffixesis carried out.

For each file name and path element, a concatenated file name s created. If aknown file extension
is part of the file name only thisfile is searched, otherwise the file name is extended by the
extensions"" (empty string), ".rexx", ".rex", ".cmd", and ".rx" in this order. The file name caseis
ignored on systems that ignore the character case for normal file operations like DOS, Windows,

and OS/2.

The first matching file terminates the whole algorithm and the found file is returned.

The environment variable REGINA_SUFFIXES extends the list of known suffixes as specified
above, and isinserted after the empty extension in the process. REGINA_SUFFIXES hasto
contain a space or comma separated list of extensions, adot in front of each entry is allowed,
e.g. ".macro,.mac,.regind’ or "macro mac regina"

Note that it is planned to extend the list of known suffixes by ".rxc" in version 3.4 to alow for
seamless integration of pre-compiled macros.

Example: Locating an external Rexx program for execution

Assume you have a call to an external function, and it is coded as follows:

Call nyextfunc argl, arg2

13

Assume also that the file myextfunc.cmd exists in the directory /opt/rexx/, and that
PATH=/usr/bin:/opt/rexx, REGINA_MACROS isnot set, and REGINA_SUFFIXES=.macro.

The files that Reginawill search for in order are:
Jmyextfunc
Jmyextfunc.macro
Jmyextfunc.rexx
Jmyextfunc.rex
Jmyextfunc.cmd
Jmyextfunc.rx

/usr/bin/myextfunc
Jusr/bin/myextfunc.macro
/usr/bin/myextfunc.rexx
[usr/bin/myextfunc.rex
/usr/bin/myextfunc.cmd
[usr/bin/myextfunc.rx

/opt/rexx/myextfunc

/opt/rexx/myextfunc.macro

/opt/rexx/myextfunc.rexx

/opt/rexx/myextfunc.rex

lopt/rexx/myextfunc.emd /* found!! terminate search*/

14

3 REXX Language Constructs

In this chapter, the concept and syntax of REXX clauses are explained. At the end of the chapter
thereis a section describing how Regina differs from standard REXX as described in the first part
of the chapter.

3.1 Definitions

A program in the REXX language consists of clauses, which are divided into four groups: null
clauses, commands, assignments, and instructions. The three latter groups (commands, assignments,
and instructions) are collectively referred to as statements. This does not match the terminology in
[TRL2], where "instruction™ is equivalent to what is known here as "statement”, and "keyword
instruction” is equivalent to what is known here as "instruction”. However, | find the terminology
used here ssimpler and less confusing.

Incidentally, the terminology used here matches [DANEY].

A clauseis defined as al non-clause-delimiters (i.e. blanks and tokens) up to and including a clause
delimiter. A token delimiter can be:

¢ Anend-of-line, unlessit lies within acomment. An end-of-line within a constant string is
considered a syntax error { 6}.

¢ A semicolon character that is not within acomment or constant string.

¢ A colon character, provided that the sequence of tokens leading up to it consists of asingle
symbol and whitespace. If a sequence of two symbol tokens is followed by a colon, then this
implies SYNTAX condition { 20} .

Some systems have the ability to store atext file having alast line unterminated by an end-of-line
character sequence. In general, this applies to systems that use an explicit end-of-line character
sequence to denote end-of-lines, e.g. Unix and MS-DOS systems. Under these systems, if the last
lineis unterminated, it will strictly speaking not be a clause, since a clause must include its
terminating clause delimiter. However, some interpreters are likely to regard the end-of-fileasa
clause delimiter too. The functionality of INTERPRET gives some weight to this interpretation. But
other systems may ignore that last, unterminated line, or maybe issue a syntax error. (However,
thereisno SYNTAX condition number adequately covering this situation.

Example: Binary transferring files

Suppose a REXX program is stored on an MS-DOS machine. Then, an end-of-line sequenceis
marked in the file as the two characters carriage return and newline. If thisfileis transferred to a
Unix system, then only newline marks the end-of-line. For thisto work, the file must be transferred
asatextfile. If it is (incorrectly) transferred as a binary file, the result is that on the Unix system,

15

each line seems to contain atrailing carriage return character. In an editor, it might look like this:

say 'hello world'”™M
say 'that"s it'"™M

Thiswill probably raise SYNTAX condition { 13}.

3.2 Null clauses

Null clauses are clauses that consist of only whitespace, or comments, or both; in addition to the
terminating clause delimiter. These clauses are ignored when interpreting the code, except for one
situation: null clauses containing at least one comment is traced when appropriate. Null clauses not
containing any comments are ignored in every respect.

Example: Tracing comments

The tracing of comments may be a major problem, depending on the context. There are basically
two strategies for large comments: either box multiple lines as a single comment, or make the text
on each line an independent comment, as shown below:

trace all

/*
This is a single, large comment, which spans multiple
lines.

Such comments are often used at the start of a subroutine
or similar, in order to describe both the interface to and
the functionality of the function.

*/

/* This 1is also a large comment, but it is written as */
/* multiple comments, each on its own line. Thus, these */
/* are several clauses while the comment above 1s a */
/* single comment. */

—-— These lines also consist of multiple comments, and thus
-- multiple clauses. This form of comment was introduced
-- in Regina 3.4

During tracing, the first of these will be displayed as one large comment, and during interactive
tracing, it will only pause once. The second will be displayed as multiple lines, and will make
several pauses during interactive tracing. An interpreter may solve this situation in several ways, the
main objective must be to display the comments nicely the to programmer debugging the code.
Preferably, the code is shown in afashion that resembles how it is entered in thefile.

If alabel is multiple defined, the first definition is used and the rest are ignored. Multiple defined
labelsis not an SYNTAX condition.

16

A null clause is not a statement. In some situations, like after the THEN subclause, only a statement
is expected. If anull clauseis provided, then it isignored, and the next statement is used instead.

Consider the following code:
parse pull foo

if foo=2 then

say 'foo is not 2'
else

/* do nothing */
say 'that"s it'

Thiswill not work the way indentation indicates, since the comment in this exampleis not a
statement. Thus, the ELSE reads beyond the comment, and connects to the SAY instruction which
becomesthe ELSE part. (That what probably not what the programmer intended.) This code will
say that's it,only when foo isdifferent from 2. A separate instruction, NOP has been
provided in order to fill the need that was inadequately attempted filled by the comment in the code
fragment above.

Example: Trailing comments

The effect that comments are not statements can be exploited when documenting the program, and
simultaneously making the program faster. Consider the following two loops:

sum = 0
do i=1 to 10
/*¥ sum 1 2 3 ... 8 9 10 */
sum = sum + 1
end
sum = 0
do i=1 to 10
sum = sum + 1 /*¥ sum 1 2 3 ... 8 9 10 */
end

In thefirst loop, there are two clauses, while the second loop contains only one clause, because the
comment is appended to an already existing clause. During execution, the interpreter has to spend
time ignoring the null clausein the first loop, while the second loop avoids this problem (assuming
tracing is not enabled). Thus, the second loop is faster; although only insignificantly faster for
small loops. Of course, the comment could have been taken out of the loop, which would be equally
fast to the second version above.

17

3.3 Commands

3.3.1 Assignments

Assignments are clauses where the first token is a symbol and the second token is the equal sign
(=). Thisdefinition opens for some curious effects, consider the following clauses:

a ==
Thisis not acommand, but an assignment of the expression = b to the variable a. Of
course, the expression isillegal (=b) and will trigger a SYNTAX condition for syntax error
{35}. TRL2 defines the operator == as consisting of two tokens. Thus, in the first of these
examples, the second token is =, the third token is also =, while the fourth token is b.

3 =25

Thisis an assignment of the value 5 to the symbol 3, but since thisis not a variable symbol,
thisisan illegal assignment, and will trigger the SYNTAX condition for syntax error { 31}.

"hello" = foo
Thisisnot an invalid assignment, since the first token in the clause is not a symbol. Instead,
this becomes a command.

arg =(foo) bar
The fourth statement is avalid assignment, which will space-concatenate the two variable
symbols foo and bar, and assign the result to the variable symbol arg. It is specifically
not an ARG instruction, even though it might look like one. If you need an ARG instruction
which template starts with an absolute indirect positional pattern, use the PARSE UPPER
ARG instruction instead, or prepend adot in front of the template.

An assignment can assign a value to asimple variable, a stem variable or a compound variable.
When assigning to a stem variable, al possible variable symbols having that stem are assigned the
value. Note specifically that thisis not like setting a default, it is a one time multiple assignment.

Example: Multiple assignment

The difference between REXX's multiple assignment and a default value can be seen from the
following code:

foo. = 'bar'

foo.1l = 'baz'

drop foo.l

say foo.l /* says "FOO.1" */

Here, the SAY instruction writes out FOO. 1, not bar. During the DROP instruction, the variable

FOO. 1 regainsitsoriginal, uninitialized value F0O. 1, not the value of its stem variable F0O ., i.e.
bar, because stem assignments does not set up a default.

18

Example: Emulating a default value

If you want to set the compound variable to the value of its stem variable, if the stem isinitialized,
then you may use the following code:

if (symbol ('foo.')) then
foo.l = foo.

else
drop foo.l

In this example, the FOO. 1 variableis set to the value of its stem if the stem currently isassigned a
value. Else, the FOO. 1 variable is dropped.

However, thisis probably not exactly the same, since the internal storage of the computer islikely
to store variables like FOO. 2 and FOO . 3 only implicitly (after al, it can not explicitly store every
compound having FOO. as stem). After the assignment of the value of FOO. to FOO. 1, the FOO. 1
compound variableislikely to be explicitly stored in the interpreter.

There is no way you can discover the difference, but the effects are often that more memory is used,
and some functionality that dumps all variables may dump FOO. 1 but not FOO. 2 (whichis
inconsistent). See section RexxVariablePool.

Example: Space considerations

Even more strange are the effects of the following short example:

foo. = 'bar'
drop foo.l

Although apparently very simple, there is no way that an interpreter can release al memory
referring to FOO . 1. After al, FOO. 1 has adifferent value than FOO. 2, FOO. 3, €tc., so the
interpreter must store information that tellsit that 00 . 1 hasthe uninitialized value.

These considerations may seem like nit-picking, but they will matter if you drop lots of compound
variables for a stem which has previously received a value. Some programming idioms do this, so
be aware. If you can do without assigning to the stem variable, then it is possible for the interpreter
to regain al memory used for that stem's compound variables.

19

3.4 Basic REXX Instructions

In this section, all instructions in standard REXX are described.
Extensions are listed later in this chapter.

First some notes on the terminology. What is called an instruction in this document is equivalent to
a"unit" of clauses. That is, each instruction can consist of one or more clauses. For instance, the
SAY instruction is aways a single instruction, but the T F instruction is a multi-clause instruction.
Consider the following script, where each clause has been boxed:

if a=b then
say 'hello'
else
say 'bye'

Further, the THEN or ELSE parts of thisinstruction might consist of a DO/END pair, in which case
the IF instruction might consists of an virtually unlimited number of clauses.

Then, some notes on the syntax diagrams used in the following descriptions of the instructions. The
rules applying to these diagrams can be listed as:

¢ Anything written in courier font in the syntax diagrams indicates that it should occur as-isin
the REXX program. Whenever something is written in italic font, it means that the term should
be substituted for another value, expression, or terms.

¢ Anything contained within matching pairs of square brackets ([...]) are optional, and may be left
out.

¢+ Whenever apair of curly bracesis used, it contains two or more subclauses that are separated by
the vertical bar (|). It meansthat the curly braces will be substituted for one of the subclausesit
contains.

¢+ Whenever the dlipsis(...) isused, it indicates that the immediately preceeding subclauses may
be repeated zero or more times. The scope of the ellipsisis limited to the contents of a set of
square brackets or curly braces, if it occurs there.

¢ Whenever the vertical bar | isused in any of the syntax diagrams, it means that either the term
to the left, or the term to the right can be used, but not both, and at least one of the must be used.
This"operator"” is associative (can be used in sequence), and it has lower priority than the square
brackets (the scope of the vertical bar located within a pair of square brackets or curly bracesis
limited to the text within those square brackets or curly braces.

¢ Whenever asemicolon (;) isused in the syntax diagram, it indicates that a clause separator
must be present at the point. It may either be a semicolon character, or an end-of-line.

¢ Whenever the syntax diagram is spread out over more lines, it means that any of the lines can
be used, but that the individual lines are mutually exclusive. Consider the syntax:

SAY = symbol
string

Thisis equivalent to the syntax:

20

SAY [symbol | string]

Because in the first of these two syntaxes, the SAY part may be continued at either line.

¢ Sometimes the syntax of an instruction is so complex that parts of the syntax has been extracted,
and is shown below in its expanded state. The following is an example of how this looks:

SAY something TO someone

something : = HI
HELLO
BYE

someone : = THE BOSS

YOUR NEIGHBOR

You can generally identify these situations by the fact that they comes a bit below the real
syntax diagram, and that they contains a colon character after the name of the term to be
expanded.

In the syntax diagrams, some generic names have been used for the various parts, in order to
indicate common attributes for the term. For instance, whenever aterm in the syntax diagramsis
called expr, it means that any valid REXX expression may occur instead of that term. The most
common such names are:

condition
Indicates that the subclause can be any of the names of the conditions, e.g. SYNTAX,

NOVALUE, HALT, €etc

expr
Indicates that the subclause can be any valid REXX expression, and will in general be
evaluated as normal during execution.

statement
Indicates that extra clauses may be inserted into the instruction, and that exactly one of them
must be a true statement.

string
Indicates that the subclause is a constant string, i.e. either enclosed by single quotes ('...") or
double quotes ("...").

symbol

Indicates that the subclause is a single symbol. In general, whenever symbol is used as the

name for a subclause, it means that the symbol will not automatically be expanded to the

value of the symbol. But instead, some operation is performed on the name of the symbol.
template

Indicates that the subclause is a parsing template. The exact syntax of thisisexplained in a

chapter on tracing, to be written later.

In addition to this, variants may also exist. These variants will have an extra letter or number
appended to the name of the subclause, and is used for differing between two or more subclauses

21

having the same "type" in one syntax diagram. In the case of other names for the subclauses, these
are explained in the description of the instruction.

3.4.1 The ARG Instruction
ARG [template 1 [, [template] ... 1;

The ARG instruction will parse the argument strings at the current procedural level into the template.
Parsing will be performed in upper case mode. This clauseis equivalent to:

PARSE UPPER ARG [template] ;

For more information, see the PARSE instruction. Note that this is the only situation where a
multistring template is relevant.

Example: Beware assighments

The similarity between ARG and PARSE UPPER ARG has one exception. Suppose the PARSE
UPPER ARG has an absolute positional pattern as the first element in the template, like:

parse upper arg =(foo) bar

Thisis not equivalent to an ARG instruction, because ARG instruction would become an assignment.
A simpletrick to avoid this problem is just to prepend a placeholder period (.) to the pattern, thus
the equal sign (=) is no longer the second token in the new ARG instruction. Also, unless the
absolute positional pattern isindirect, the equal sign can be removed without changing the meaning
of the statement.

3.4.2 The CALL Instruction

CALL routine [parameter] [, | parameter] ...] ;

{ ON | OFF } condition [NAME label] ;

The CALL instruction invokes a subroutine, named by routine, which can be internal, built-in, or
external; and the three repositories of functions are searched for routine in that order. The token
routine must be either aliteral string or a symbol (which istaken literally). However, if routineis a
literal string, the pool of internal subroutinesis not searched. Note that some interpreters may have
additional repositories of labels to search.

InaCALL instruction, each parameter is evaluated, strictly in order from left to right, and passed as
an argument to the subroutine. A parameter might be left out (i.e. an empty argument), which is not
the same as passing the nullstring as argument.

Users often confuse a parameter which is the nullstring with leaving out the parameter. However,

thisistwo very different situations. Consider the following calls to the built-in function
TRANSLATE () :

22

say translate ('abcDEF') /* says ABCDEF */
say translate('abcDEF',"") /* says abcDEF */
say translate('abcDEF',,"") /* says ' vox/

The TRANSLATE () function is able to differ between receiving the nullstring (i.e. adefined string
having zero length), from the situation where a parameter was not specified (i.e. the undefined
string). Since TRANSLATE () isone of the few functions where the parameters' default values are
very different from the nullstring, the distinction becomes very visible.

BreakageAlert!!
Prior to Version 3.1 of Regina, the following syntactical use of the CALL instruction was valid:

CALL routine '(' [parameter] [, [parameter] ... 1 ")' ;

e.g.

call myfunc('abcDEF',,"")

This syntax is not allowed by ANSI and use of this syntax will now result in Error 37.1. There
exists an option introduced in Regina 3.3 which reenables a similar behaviour, although
parameters with individual parentheses are allowed since 3.1. The option is called
CALLS AS FUNCS and should

be enabled using the environment variable called REGINA_OPTIONS. See the description of the
instruction OPTIONS for further details.

BreakageAlert!!

For the CALL instruction, watch out for interference with line continuation. If there are trailing
commas, it might be interpreted as line continuation. Appending a semicolon where appropriateisa
common solution to make the desired bahaviour obvious. If a CALL instruction uses line
continuation between two parameters, two commas are needed: one to separate the parameters, and
one to denote line continuation.

A number of settings are stored across internal subroutine calls. An internal subroutine will inherit
the values in effect when the call is made, and the settings are restored on exit from the subroutine.
These settings are:

Conditions traps, see chapter Conditions.

Current trapped condition, see section CTS.

NUMERIC settings, see section Numeric.

ADDRESS environments, see section Address.

TRACE mode, see section Trace and chapter [not yet written].
The elapse time clock, see section Time.

* & & o o o

Also, the OPTIONS settings may or may not be restored, depending on the implementation; Regina
restores the current OPTIONS. Note that external subroutines don't inherit the current OPTIONS as

23

internal subroutines do. See the section OPTIONS for adetailed explanation. Further, a number of
other things may be saved across internal subroutines. The effect on variables are controlled by the
PROCEDURE instruction in the subroutine itself. The state of all DO-loops will be preserved during
subroutine calls.

Example: Subroutines and trace settings

Subroutines can not be used to set various settings like trace settings, NUMER I C settings, etc. Thus,
the following code will not work as intended:

say digits() /* says 9, maybe */
call inc digits

say digits() /* still says 9 */
exit

inc digits:
numeric digits digits () + 1
return

The programmer probably wanted to call a routine which incremented the precision of arithmetic
operations. However, since the setting of NUMERIC DIGITS issaved across subroutine calls, the
new valuesetin inc digits islost at return from that routine. Thus, in order to work correctly,
the NUMERIC instruction must be located in the main routine itself.

Built-in subroutines will have no effect on the settings, except for explicitly defined side effects.
Nor will external subroutines change the settings. For all practical purposes, an external subroutine
is conceptually equivalent to reinvoking the interpreter in atotally separated process.

If the name of the subroutine is specified by aliteral string, then the name will be used as-is; it will

not be converted to upper case. Thisisimportant because a routine which contains lower case
letters can only be invoked by using aliteral string as the routine name in the CALL instruction.

Example: Labels are literals

Labels are literal, which means that they are neither tail-substituted nor substituted for the value of
the variable. Further, this also means that the setting of NUMERIC DIGITS hasno influence on the

section of labels, even when the labels are numeric symbols. Consider the following code:

24

call 654.32
exit

654.321:
say here
return

654.32:
say there
return

In this example, the second of the two subroutines are always chosen, independent of the setting of
NUMERIC DIGITS.Assumingthat NUMERIC DIGITS are setto 5, then the number 654.321 is
converted to 654.32, but that does not affect labels. Nor would a statement CALL 6.5432E2 call
the second label, even though the numeric value of that symbol is equal to that of one of the labels.

The called subroutines may or may not return data to the caler. In the calling routine, the specia
variable RESULT will be set to the return value or dropped, depending on whether any data was
returned or not. Thus, the CALL instruction is equivalent to calling the routine as a function, and
assigning the return value to RESULT, except when the routine does not return data.

In REXX, recursive routines are allowed. A minimum number of 100 nested internal and external
subroutine invocations, and support for aminimum of 10 parameters for each call are required by
REXX. See chapter Limits for more information concerning implementation limits.

When the token following CALL is either ON or OFF, the CALL instruction is not used for calling a

subroutine, but for setting up condition traps. In this case, the third token of the clause must be the
name of a condition, which setup isto be changed.

If the second token was ON, then there can be either three or five tokens. If the five token version is
used, then the fourth token must be NAME and the fifth token is taken to be the symbolic name of a

label, which is the condition handler. This name can be either a constant string, or a symbol, which

istaken literally. When OFF is used, the named condition trap is turned off.

Note that the ON and OFF forms of the CALL instruction were introduced in TRL2. Thus, they are

not likely to be present on older interpreters. More information about conditions and condition traps
are given in a chapter Conditions.

25

3.4.3 The DO/END Instruction

DO [repetitor] [conditional] ;
[clauses]
END [symbol] ;

repetitor : = symbol = expri [TO exprt]
[BY exprb] [FOR exprf]
exprr
FOREVER

conditional : = WHILE exprw

UNTIL expru

The DO/END instruction is the instruction used for looping and grouping several statementsinto one
block. Thisisamulti-clause instruction.

The most simple case is when there is no repetitor or conditional, in which case it works like
BEGIN/END in Pasca or {...} inC. l.e. it groups zero or more REXX clauses into one conceptual
Statement.

The repetitor subclause controls the control variable of the loop, or the number of repetitions. The
exprr subclause may specify a certain number of repetitions, or you may use FOREVER to go on
looping forever.

If you specify the control variable symbol, it must be a variable symbol, and it will get the initial
value expri at the start of the loop. At the start of each iteration, including the first, it will be
checked whether it has reached the value specified by exprt. At the end of each iteration the value
exprb is added to the control variable. The loop will terminate after at most exprf iterations. Note
that all these expressions are evaluated only once, before the loop is entered for the first iteration.

You may also specify UNTIL or WHILE, which take a boolean expression. WHILE is checked
before each iteration, immediately after the maximum number of iteration has been performed.
UNTIL ischecked after each iteration, immediately before the control variable isincremented. Itis
not possible to specify both UNTIL and WHILE in the same DO instruction.

The FOREVER keyword is only needed when there is no conditional, and the repetitor would also
be empty if FOREVER was not specified. Actually, you could rewritethisas DO WHILE 1.The
two forms are equivalent, except for tracing output.

The subclauses TO, BY, and FOR may come in any order, and their expressions are evaluated in the
order in which they occur. However, the initial assignment must always come first. Their order may

affect your program if these expressions have any side effects. However, thisis seldom a problem,
since it is quite intuitive.

Example: Evaluation order

What may prove areal trap, is that although the value to which the control variableis set is
evaluated before any other expressionsin the repetitor, it is assigned to the control variable after all

26

expressionsin the repetitor have been evaluated.
The following code illustrates this problem:

ctrl =1

do ctrl=f(2) by f£(3) to f£(5)
call £ ¢

end

call £ 7

exit

f:
say 'ctrl='ctrl 'arg='arg(l)
return arg (1)

This code produces the following outpuit:

ctrl=1 arg=2
ctrl=1 arg=3
ctrl=1 arg=>5
ctrl=2 arg=6
ctrl=5 arg=6
ctrl=8 arg=7

Make sure you understand why the program produces this output. Failure to understand this may
give you asurprise later, when you happen to write a complex DO-instruction, and do not get the
expected resullt.

If the TO expression is omitted, there is no checking for an upper bound of the expression. If the BY
subclause is omitted, then the default increment of 1 isused. If the FOR subclause is omitted, then
thereis no checking for a maximum number of iterations.

Example: Loop convergence For the reasons just explained, the instruction:

do ctrl=1
nop /* and other statements */
end

will start with CTRL being 1, and then iterate through 2, 3, 4, ..., and never terminate except by
LEAVE, RETURN, SIGNAL, Or EXIT.

Although similar constructsin other languages typically provokes an overflow at some point,
something "strange" happensin REXX. Whenever the value of ctr1 becomestoo large, the
incrementation of that variable produces aresult that is identical to the old value of ctr1. For
NUMERIC DIGITS setto9, thishappenswhen ctrl becomes 1.00000000E+9. When adding 1 to
this number, the result is still 1.00000000E+9. Thus, the loop "converges' at that value.

If thevalue of NUMERIC DIGITS is1,thenitwill "converge" at 10, or 1E+1 which isthe
"correct” way of writing that number under NUMERIC DIGITS 1. Youcaningenera disregard

27

loop "convergence”, because it will only occur in very rare situations.
Example: Difference between UNTIL and WHILE

One frequent misunderstanding is that the WHIL.E and UNT I L subclauses of the DO/END instruction
are equivalent, except that WHILE is checked before the first iteration, while UNT I L isfirst checked
before the second iteration.

This may be so in other languages, but in REXX. Because of the order in which the parts of the loop
are performed, there are other differences. Consider the following code:

count =1

do i=1 while count \= 5
count = count + 1

end

say 1 count

count =1

do i=1 until count=5
count = count + 1

end

say 1 count

After thefirst loop, the numbers 5 and 5, while in the second loop, the numbers 4 and 5 are written
out. Thereason isthat aWwHILE clauseis checked after the control variable of the loop has been
incremented, but an UNT I L expression is checked before the incrementation.

A loop can be terminated in several ways. A RETURN or EXIT instruction terminates all active
loops in the procedure levels terminated. Further, a STGNAL instruction transferring control (i.e.
neither aSIGNAL ON nor SIGNAL OFF) terminates all loops at the current procedural level. This
applies even to "implicit" STGNAL instructions, i.e. when triggering a condition handler by the
method of STGNAL. A LEAVE instruction terminates one or more loops. Last but not least, aloop
can terminate itself, when it has reached its specified stop conditions.

Note that the STGNATL instruction terminates also non-repetitive loops (or rather: DO/END pairs),
thus after an STGNAL instruction, you must not execute an END instruction without having
executed its corresponding DO first (and after the STGNAL instruction). However, aslong as you
stay away from the ENDs, it isall right according to TRL to execute code within aloop without
having properly activated the loop itself.

Note that on exit from aloop, the value of the control variable has been incremented once after the
last iteration of the loop, if the loop was terminated by the WHILE expression, by exceeding the
number of max iterations, or if the control variable exceeded the stop value. However, the control
variable has the value of the last iteration if the loop was terminated by the UNT I L. expression, or
by an instruction inside the loop (e.g. LEAVE, STIGNAL, €etc.).

The following algorithm in REXX code shows the execution of a DO instruction, assuming that
expri, exprt, exprb, exprf, exprw, expru, and symbol have been taken from the syntax diagram of DO.

28

dexpri = expri
@exprt exprt
@exprb = exprb
dexprf = exprf
@iters = 0

symbol = (dexpri

start of loop:
if symbol > (@extrt then signal after loop
if @iters > (@exprf then signal after loop
if \exprw then signal after loop

instructions

end of loop:
if expru then signal after loop
symbol = symbol + (@exprb
signal start of loop

after loop:

Some notes are in order for this algorithm. First, it usesthe STGNAL instruction, which is defined to
terminate all active loops. This aspect of the STGNATL instruction has been ignored for the purpose
of illustrating the DO, and consequently, the code shown above is not suitable for nested |oops.
Further, the order of the first four statements should be identical to the order in the corresponding
subclausesin the repetitor. The code has also ignored that the WHILE and the UNT I L subclauses
can not be used in the same DO instruction. And in addition, all variables starting with the at sign
(@), are assumed to be internal variables, private to this particular loop. Within instructions, a
LEAVE ingtruction isequivalentto signal after loop, whilea ITERATE instructionis
equivalentto signal end of loop.

3.4.4 The EXIT Instruction
EXIT [expr] ;

Terminates the REXX program, and optionally returns the expression expr to the caller. If specified,
expr can be any string. In some systems, there are restrictions on the range of valid values for the
expr. Often the return expression must be an integer, or even anon-negative integer. Thisis not
really arestriction on the REXX language itself, but arestriction in the environment in which the
interpreter operates, check the system dependent documentation for more information.

If expr is omitted, nothing will be returned to the caller. Under some circumstances that is not legal,
and might be handled as an error or adefault value might be used. The EXIT instruction behaves
differently in a"program” than in an external subroutine. In a"program”, it returns control to the
caller e.g. the operating system command interpreter. While for an external routine, it returns
control to the calling REXX script, independent of the level of nesting inside the external routine
being terminated.

29

RETURN EXIT
At the main level of the program Exits program Exits program
At an internal subroutine level of the Exits subroutine, and returns ~ EXits program
program to caller
At the main level of an externa Exitsthe external subroutine Exitsthe external
subroutine subroutine
At asubroutine level within an external = Exits the subroutine, returning — Exits the external
subroutine to calling routine within subroutine
external subroutine script

Actions of RETURN and EXIT Instructions

If terminating an external routine (i.e. returning to the calling REXX script) any legal REXX string
valueisallowed as areturn value. Also, no return value can be returned, and in both cases, this
information is successfully transmitted back to the calling routine. In the case of afunction cal (as
opposed to a subroutine call), returning no value will raise SYNTAX condition {44} . The table
above describes the actions taken by the EXIT and RETURN instruction in various situations.

3.4.5 The IF/THEN/ELSE Instruction

IF expr [;] THEN [;] statement
[ELSE [;] statement]

Thisisanormal if-construct. First the boolean expression expr is evaluated, and its value must be
either 0 or 1 (everything elseis asyntax error which raises SYNTAX condition number { 34}).
Then, the statement following either THEN or ELSE is executed, depending on whether expr was 1
or 0, respectively.

Note that there must come a statement after THEN and ELSE. It isnot allowed to put just a null-
clause (i.e. acomment or alabel) there. If you want the THEN or ELSE part to be empty, use the
NOP instruction. Also note that you can not directly put more than one statement after THEN or

ELSE; you have to package them in a DO-END pair to make them a single, conceptual statement.

After THEN, after ELSE, and before THEN, you might put one or more clause delimiters (newlines
or semicolons), but these are not required. Also, the EL.SE part is not required either, in which case
no code is executed if expr isfase (evaluatesto 0). Note that there must also be a statement
separator before ELSE, since the that statement must be terminated. This also appliesto the
statement after EL.SE. However, since statement includes atrailing clause delimiter itself, thisis
not explicitly shown in the syntax diagram.

Example: Dangling ELSE

Note the case of the "dangling” ELSE. If an ELSE part can correctly be thought of as belonging to
more than one IF/THEN instruction pair, it will be parsed as belonging to the closest (i.e.
innermost) I F instruction:

30

parse pull foo bar
if foo then
if bar then
say 'foo and bar are true'
else
say 'one or both are false'

In this code, the ELSE instruction is nested to theinnermost IF,i.e.to IF BAR THEN.

3.4.6 The ITERATE Instruction
ITERATE [symbol] ;

The ITERATE instruction will iterate the innermost, active loop in which the TTERATE instruction
islocated. If symbol is specified, it will iterate the innermost, active loop having symbol as control
variable. The simple DO/END statement without a repetitor and conditional is not affected by
ITERATE. All active multiclause structures (DO, SELECT, and IF) within the loop being iterated
are terminated.

The effect of an ITERATE isto immediately transfer control to the END statement of the affected
loop, so that the next (if any) iteration of the loop can be started. It only affects loops on the current
procedural level. All actions normally associated with the end of an iteration is performed.

Note that symbol must be specified literaly; i.e. tail substitution isnot performed for compound
variables. So if the control variable in the DO instruction is FOO . BAR, then symbol must use
FOO.BAR if it isto refer to the control variable, no matter the value of the BAR variable.

Also notethat ITERATE (and LEAVE) are means of transferring control in the program, and
therefore they are related to STGNAL, but they do not have the effect of automatically terminating
all active loops on the current procedural level, which STGNAL has.

Two types of errors can occur. Either symbol does not refer to any loop active at the current
procedural level; or (if symbol is not specified) there does not exist any active loops at the current
procedural level. Both errors are reported as SYNTAX condition {28} .

3.4.7 The LEAVE Instruction

LEAVE [symbol] ;
This statement terminates the innermost, active loop. If symbol is specified, it terminates the
innermost, active loop having symbol as control variable. Asfor scope, syntax, errors, and
functionality, it isidentical to ITERATE, except that LEAVE terminates the loop, while ITERATE

lets the loop start on the next iteration normal iteration. No actions normally associated with the
normal end of an iteration of aloop is performed for a LEAVE instruction.

Example: lterating a simple DO/END

In order to circumvent this, asimple DO/END can be rewritten asthis:

31

if foo then do until 1
say 'This is a simple DO/END group'
say 'but it can be terminated by’
leave
say 'iterate or leave'

end

This shows how ITERATE has been used to terminate what for all practical purposesisasimple
DO/END group. Either ITERATE or LEAVE can be used for this purpose, athough LEAVE is
perhaps marginally faster.

3.4.8 The NOP Instruction
NOP ;

The NOP instruction is the "no operation” statement; it does nothing. Actually, that is not totally
true, sincethe NOP instructionisa'real" statement (and a placeholder), as opposed to null clauses.
I've only seen this used in two circumstances.

¢ After any THEN or ELSE keyword, where a statement is required, when the programmer wants
an empty THEN or ELSE part. By the way, thisisthe intended use of NOP. Note that you can
not use anull clause there (1abel, comment, or empty lines), since these are not parsed as
"independent” statements.

¢ | have seenit used as "trace-bait". That is, when you start interactive trace, the statement
immediately after the TRACE instruction will be executed before you receive interactive control.
If you don't want that to happen (or maybe the TRACE instruction was the last in the program),
you need to add an extra dummy statement. However, in this context, labels and comments can
be used, too.

3.4.9 The NUMERIC Instruction

NUMERIC DIGITS [expr] ;
FORM [SCIENTIFIC | ENGINEERING | [VALUE] expr] ;
FUZZ [expr 1 ;

REXX has an unusual form of arithmetic. Most programming languages use integer and floating
point arithmetic, where numbers are coded as bits in the computers native memory words. However,
REXX uses floating point arithmetic of arbitrary precision, that operates on strings representing the
numbers. Although much slower, this approach giveslots of interesting functionality. Unless
number-crunching is your task, the extratime spent by the interpreter is generally quite acceptable
and often almost unnoticeable.

The NUMERIC statement is used to control most aspects of arithmetic operations. It has three
distinct forms: DIGITS, FORM and FUZZ; which to choose is given by the second token in the
instruction:

DIGITS
I's used to set the number of significant digitsin arithmetic operations. The initial valueis9,

32

which is aso the default value if expr isnot specified. Large valuesfor DIGITS tend to
slow down some arithmetic operations considerably. If specified, expr must be a positive
integer.

FUZZ
Is used in numeric comparisons, and itsinitial and default value is 0. Normally, two numbers
must have identical numeric values for a number of their most significant digitsin order to
be considered equal. How many digits are considered is determined by DIGITS. If DIGITS
iS4, then 12345 and 12346 are equal, but not 12345 and 12356. However, when FUZ7Z is
non-zero, then only the DIGITS minus FUZZ most significant digits are checked. E.g. if
DIGITS is4and FUZZ are 2, then 1234 and 1245 are equal, but not 1234 and 1345.

The value for FUZZ must be a non-negative integer, and less than the value of DIGITS.
FUZZ isseldom used, but is useful when you want to make comparisons less influenced by
inaccuracies. Note that using with values of FUZZ that iscloseto DIGITS may give highly
surprising results.

FORM
I's used to set the form in which exponential numbers are written. It can be set to either
SCIENTIFIC or ENGINEERING. The former uses a mantissain the range 1.000... to
9.999..., and an exponent which can be any integer; while the latter uses a mantissain the
range 1.000... to 999.999..., and an exponent which is dividable by 3. Theinitial and default
Setting IS SCIENTIFIC. Following the subkeyword FORM may be the subkeywords
SCIENTIFIC and ENGINEERING, or the subkeyword VALUE. In the latter case, the rest
of the statement is considered an expression, which will evaluate to either SCIENTIFIC or
ENGINEERING. However, if the first token of the expression following VALUE is neither a
symbol nor literal string, then the VALUE subkeyword can be omitted.

The setting of FORM never affects the decision about whether to choose exponential form or normal

floating point form; it only affects the appearance of the exponential form once that form has been
selected.

Many things can be said about the usefulness of FUZZ. My impression isthat it is seldom used in
REXX programs. One problem is that it only addresses relative inaccuracy: i.e. that the smaller
value must be within a certain range, that is determined by a percentage of the larger value. Often
one needs absol ute inaccuracy, e.g. two measurements are equal if their difference arelessthan a
certain absol ute threshold.

Example: Simulating relative accuracy with absolute accuracy

As explained above, REXX arithmetic has only relative accuracy, in order to obtain absolute
accuracy, one can use the following trick:

numeric fuzz 3
if a=b then

say 'relative accuracy'
if abs(a-b)<=500 then

say 'absolute accuracy'

Inthefirst IF instruction, if A is 100,000, then the range of values for B which makes the

33

expression true is 99,500-100,499, i.e. an inaccuracy of about +-500. If A has the value 10,000,000,
then B must be within the range 9,950,000-10,049,999; i.e. an inaccuracy of about +-50,000.

However, in the second IF instruction, assuming 2 is 100,000, the expression becomes true for
values of B in the range 99,500-100,500. Assuming that A is 10,000,000, the expression becomes
true for values of B in the range 9,999,500-10,000,500.

The effect is largely to force an absolute accuracy for the second example, no matter what the
values of A and B are. This transformation has taken place since an arithmetic subtraction is not
affected by the NUMERIC FUZZ, only numeric comparison operations. Thus, the effect of
NUMERIC FUZZ ontheimplicit subtraction in the operation = in the first IF has been removed by
making the subtraction explicit.

Note that there are some minor differences in how numbers are rounded, but this can be fixed by
transforming the expression into something more complex.

To retrieve the values set for NUMERIC, you can use the built-in functions DIGITS (), FORM (),
and FUZZ () . These values are saved across subroutine calls and restored upon return.

3.4.10 The PARSE Instruction

PARSE [option] [CASELESS] type [template] ;

option = { UPPER | LOWER }

type = { ARG | LINEIN | PULL | SOURCE | VERSION | VALUE [
expr] WITH | VAR symbol }

The PARSE instruction takes one or more source strings, and then parses them using the template
for directions. The process of parsing is one where parts of a source string are extracted and stored
in variables. Exactly which parts, is determined by the patterns specified by template. template can
be anumber of patterns seperated by commas.

If the option UPPER is specified, the input source strings are uppercased (based on locale) before
being split into the variables specified by template.

If the option LOWER is specified, the input source strings are lowercased (based on locale) before
being split into the variables specified by template.

If CASELESS s specified, any character strings in template will be matched against the source
strings irrespective of case (based on locale).

Which strings are to be the source of the parsing is defined by the type subclause, which can be any
of:

ARG.
The data to use as the source during the parsing is the argument strings given at the
invocation of this procedure level. Note that this is the only case where the source may
consist of multiple strings.

LINEIN.
Makes the PARSE instruction read aline from the standard input stream, asif the
LINEIN () built-in function had been called. It uses the contents of that line (after stripping

off end-of-line characters, if necessary) as the source for the parsing. This may raise the
NOTREADY condition if problems occurred during the read.

PULL.

Retrieves as the source string for the parsing the topmost line from the stack. If the stack is
empty, the default action for reading an empty stack istaken. That is, it will read awhole
line from the standard input stream, strip off any end-of-line characters (if necessary), and
use that string as the source.

SOURCE.
The source string for the parsing is a string containing information about how this
invocation of the REXX interpreter was started. This information will not change during the
execution of a REXX script. The format of the string is:

system invocation filename

Here, the first space-separated word (system) is a single word describing the platform on
which the system is running. Often, thisisthe name of the operating system. The second
word describes how the script was invoked. TRL 2 suggests that invocation could be
COMMAND, FUNCTION, or SUBROUTINE, but notes that this may be specific to VM/CMS.

Everything after the second word is implementation-dependent. It is indicated that it should
refer to the name of the REXX script, but the format is not specified. In practice, the format
will differ because the format of file names differs between various operating systems. Also,
the part after the second word might contain other types of information. Refer to the
implementation-specific notes for exact information.

VALUE expr WITH.
Thisform will evaluate expr and use the result of that evaluation as the source string to be
parsed. The token WITH may not occur inside expr, sinceit is areserved subkeyword in this
context.

VAR symbol.
This form uses the current value of the named variable symbol (after tail-substitution) as the
source string to be parsed. The variable may be any variable symbol. If the variable is
uninitialized, then aNOTREADY condition will be raised.

VERSION.
This format resembles SOURCE, but it contains information about the version of REXX that
the interpreter supports. The string contains five words, and has the following format:

language level date month year

Where language is the name of the language supported by the REXX interpreter. This may
seem like overkill, since the language is REXX, but there may be various different dialects
of REXX. The word can be just about anything, except for two restrictions, the first four
letters should be REXX (in upper case), and the word should not contain any periods.
[TRL2] indicates that the remainder of the word (after the fourth character) can be used to
identify the implementation.

35

The second word isthe REXX language level supported by the interpreter. Note that thisis
not the same as the version of the interpreter, although several implementations makes this
mistake. Strictly speaking, neither [TRL1] nor [TRLZ2] define the format of thisword, but a
numeric format is strongly suggested.

The last three words (date, month, and year) makes up the date part of the string. Thisisthe
release date of the interpreter, in the default format of the DATE () built-in function.

Much confusion seems to be related to the second word of PARSE VERSION. It describes the
language level, which is not the same as the version number of the interpreter. In fact, most
interpreters have a version numbering which is independent of the REXX language level.
Unfortunately, several interpreters makes the mistake of using thisfield asfor their own version
number. Thisis very unfortunate for two reasons; first, it isincorrect, and second, it makes it
difficult to determine which REXX language level the interpreter is supposed to support.

Chances are that you can find the interpreter version number in PARSE SOURCE or the first word
of PARSE VERSION.

The format of the REXX language level isnot rigidly defined, but TRL 1 corresponds to the
language level 3.50, while TRL2 corresponds to the language level 4.00. Both implicitly indicate
the that language level description isanumber, and states that an implementation less than a certain
number "may be assumed to indicate a subset” of that language level. However, this must not be
taken to literally, since language level 3.50 has at least two features which are missing in language
level 4.00 (the Scan trace setting, and the PROCEDURE instruction that is not forced to be the first
instruction in a subroutine). [TRH:PRICE] gives avery good overview over the varying
functionality of different language levels of REXX up to level 4.00.

With the release of the ANSI REXX Standard [ANSI] in 1996, the REXX language IS now rigidly
defined. The language level of ANSI REXX is5.00. Regina is now compliant to the ANSI
Standard.

Thus PARSE VERSION will return 5.00.

Note that even though the information of the PARSE SOURCE is constant throughout the execution
of aREXX script, thisis not necessarily correct for the PARSE VERSTION. If your interpreter
supports multiple language levels (e.g. through the OPT TONS instruction), then it will have to
change the contents of the PARSE VERSION string in order to comply with different language
levels. To some extent, this may also apply to PARSE SOURCE, since it may have to comply with
several implementation-specific standards.

After the source string has been selected by the type subclause in the PARSE instruction, this string
is parsed into the template. The functionality of templatesis common for the PARSE, ARG and
PULL instructions, and is further explained in chapter [not yet written].

3.4.11 The PROCEDURE Instruction

PROCEDURE [EXPOSE [varref [varref ... 1 1 1
varref = { symbol | (symbol) }

The PROCEDURE instruction is used by REXX subroutines in order to control how variables are

36

shared among routines. The simplest use is without any parameters; then all future references to
variablesin that subroutine refer to local variables. If thereisno PROCEDURE instruction in a
subroutine, then all variable references in that subroutine refer to variablesin the calling routine's
name space.

If the EXPOSE subkeyword is specified too, then any references to the variablesin the list
following EXPOSE refer to local variables, but to variables in the name space of the calling routine.

Example: Dynamic execution of PROCEDURE

The definition opens for some strange effects, consider the following code:
call testing

testing:
say foo
procedure expose bar
say foo

Here, the first reference to FOO isto the variable FOO in the caller routine's name space, while the
second reference to FOO isto alocal variable in the called routine's name space. Thisis difficult to
parse statically, since the names to expose (and even when to expose them) is determined
dynamically during run-time. Note that this use of PROCEDURE isalowed in [TRL1], but not in
[TRLZ2].

Several restrictions have been imposed on PROCEDURE in [TRLZ2] in order to ssimplify the
execution of PROCEDURE (and in particular, to ease the implementation of optimizing interpreters
and compilers).

¢ Thefirst restriction, to which all REXX interpreters adhere asfar as| know, is that each
invocation of asubroutine (i.e. not the main program) may execute PROCEDURE at most once.
Both TRL1 and TRL2 contain this restriction. However, more than one PROCEDURE instruction
may exist "in" each routine, aslong as at most one is executed at each invocation of the
subroutine.

¢ The second restriction is that the PROCEDURE instruction must be the first statement in the
subroutine. This restriction was introduced between REXX language level 3.50 and 4.00, but
severa level 4.00 interpreters may not enforce it, since there is no breakage when allowing it.

There are several important consequences of this second restriction:

(1) it implicitly includes the first restriction listed above, since only one instruction can be the first;
(2) it prohibits selecting one of several possible PROCEDURE instructions; (3) it prohibits using the
same variable name twice; first as an exposed and then as alocal variable, asindicated in the
example above; (4) it prohibits the customary use of PROCEDURE and INTERPRET, where the
latter is used to create alevel of indirectness for the PROCEDURE instruction. This particular use
can be exemplified by:

37

testing:
interpret 'procedure expose' bar

where BAR holds alist of variable names which are to be exposed. However, in order to make this
functionality available without having to resort to INTERPRET, which is generally considered
"bad" programming style, new functionality has been added to PROCEDURE between language
levels 3.50 and 4.00. If one of the variablesin the list of variables is enclosed in parentheses, that
means indirection. Then, the variables exposed are: (1) the variable enclosed in parentheses; (2) the
value of that variableisread, and its contents is taken to be a space-separated list of variable names;
and (3) all there variable names are exposed strictly in order from left to right.

Example: Indirect exposing

Consider the following example:

testing:
procedure expose foo (bar) baz

Assuming that the variable BAR holdsthe value one two, then variables exposed are the
following: FOO, BAR, ONE, TWO, BAZ, in that order. In particular, note that the variable FOO is
exposed immediately before the variables which it names are exposed.

Example: Order of exposing

Then there is another fine point about exposing, the variables are hidden immediately after the
EXPOSE subkeyword, so they are not initially available when the variable list is processed.
Consider the following code:

testing:
procedure expose bar foo.bar foo.baz baz

which exposes variables in the order specified. If the variable BAR holds the value 123, then

FOO. 123 isexposed as the second item, since BAR is visible after having aready been exposed as
the first item. On the other hand, the third item will always expose the variable FOO . BAZ, no
matter what the value of BAZ isinthe caller, sincethe BAZ variable is visible only after it has been
used in the third item. Therefore, the order in which variables are exposed is important. So, if a
compound variable is used inside parentheses in an PROCEDURE instruction, then any simple
symbols needed for tail substitution must previously to have been explicitly exposed. Compare this
to the DROP instruction.

What exactly is exposing? Well, the best description isto say that it makes all future uses (within
that procedural level) to a particular variable name refer to the variable in the calling routine rather
than in the local subroutine. The implication of thisisthat even if it isdropped or it has never been
set, an exposed variable will still refer to the variable in the calling routine. Another important
thing isthat it is the tail-substituted variable name that is exposed. So if you expose FOO . BAR, and
BAR hasthevalue 123, then only FOO. 123 isexposed, and continues to be so, even if BAR later
changesitsvaueto eg. 234.

38

Example: Global variables

A problem lurking on new REXX users, is the fact that exposing a variable only exposesit to the
calling routine. Therefore, it isincorrect to speak of global variables, since the variable might be
local to the calling routine. Toillustrate, consider the following code:

foo = 'bar'
call subl
call sub2
exit

subl: procedure expose foo
say foo /* first says 'bar', then 'FOO' */
return

sub2: procedure
say foo /* says 'FOO' */
call subl
return

Here, the first subroutine call in the "main" program writes out bar, since the variable FOO in
SUB1 refersto the FOO variable in the main program's (i.e. its caller routine's) name space. During
the second call from the main program, SUB2 writes out FOO, since the variable is not exposed.
However, SUB2 calls SUB1, which exposes FOO, but that subroutine also writes out FOO. The
reason for thisisthat ExPOSE works on the run-time nesting of routines, not on the typographical
structure of the code. So the PROCEDURE in SUB1 (on its second invocation) exposes FOO to
SUB2, not to the main program as typography might falsely indicate.

The often confusing consequence of the run-time binding of variable namesis that an exposed
variable of SUB1 can be bound to different global variables, depending on from where it was called.
This differs from most compiled languages, which bind their variables independently of from where
asubroutine is called. In turn, the consequence of thisisthat REXX has severe problems storing a
persistent, static variable which is needed by one subroutine only. A subroutine needing such a
variable (e.g. acount variable which isincremented each time the subroutine is called), must either
use an operating system command, or all subroutines calling that subroutine (and their calling
routines, etc.) must expose the variable. The first of these solution is very inelegant and non-
standard, while the second is at best troublesome and at worst seriously limits the maximum
practical size of aREXX program. There are hopesthat the VALUE () built-in function will fix this
in future standards of REXX.

Another important drawback with PROCEDURE isthat it only works for internal subroutines; for
external subroutinesit either do not work, or PROCEDURE may not even be allowed on the main
level of the external subroutine. However, in internal subroutines inside the external subroutines,
PROCEDURE is allowed, and works like usual.

39

3.4.12 The RETURN Instruction
RETURN [expr 1

The RETURN instruction is used to terminate the current procedure level, and return control to a
level above. When RETURN is executed inside one or more nesting construct, i.e. DO, IF, WHEN, or
OTHERWI SE, then the nesting constructs (in the procedural levels being terminated) are terminated
too.

Optionally, an expression can be specified as an argument to the RETURN instruction, and the string
resulting from evaluating this expression will be the return value from the procedure level
terminated to the caller procedure level. Only a single value can be returned. When RETURN is
executed with no argument, no return value is returned to the caller, and then a SYNTAX condition
{44} israised if the subroutine was invoked as a function.

Example: Multiple entry points

A routine can have multiple exit points, i.e. a procedure can be terminated by any of severd
RETURN instructions. A routine can also have multiple entry points, i.e. several routine entry points
can be terminated by the same RETURN instruction. However, thisis rarer than having multiple exit
points, because it is generally perceived that it creates less structured and readable code. Consider
the following code:

call foo
call bar
call baz
exit

foo:
if datatype (name, 'w') then
drop name
signal baz

bar:
name = 'foo'
baz:
if symbol ('name')== 'VAR' then
say 'NAME currently has the value' name
else
say 'NAME is currently an unset variable'
return

Although thisis hardly avery practical example, it shows how the main bulk of aroutine can be
used together with three different entry points. The main part of the routine isthe I F statement
having two SAY statements. It can be invoked by calling FOO, BAR, or BAZ.

There are several restrictions to this approach. For instance, the PROCEDURE statement becomes
cumbersome, but not impossible, to use.

Also note that when a routine has multiple exit points, it may choose to return areturn value only at

40

some of those exit points.

When aroutine islocated at the very end of a sourcefile, thereisan implicit RETURN instruction
after the last explicit clause. However, according to good programming practice, you should avoid
taking advantage of this feature, because it can create problems later if you append new routinesto
the source file and forget to change the implied RETURN to an explicit one.

If the current procedure level isthe main level of either the program or an external subroutine, then
aRETURN instruction isequivalent to an EXIT instruction, i.e. it will terminate the REXX program
or the external routine. The tablein the Exit section shows the actions of both the RETURN and
EXIT instructions depending on the context in which they occur.

3.4.13 The SAY Instruction
SAY [expr 1 ;

Evaluates the expression expr, and prints the resulting string on the standard output stream. If expr
is not specified, the nullstring is used instead. After the string has been written, an implementation-
specific action is taken in order to produce an end-of-line.

The SAY instruction is roughly equivalent to
call lineout , expr

The differences are that there is no way of determining whether the printing was successfully
completed if SAY isused, and the special variable RESULT is never set when executing a SAY
instruction. Besides, the effect of omitting expr is different. In SAA API, the RXSTOSAY
subfunction of the RXxST0 exit handler isable to trap a SAY instruction, but not a call to the
LINEOUT () built-in function. Further, the NOTREADY condition is never raised for a SAY
instruction.

3.4.14 The SELECT/WHEN/OTHERWISE Instruction

SELECT ; whenpart [whenpart ...] [OTHERWISE [;]
[statement ...]] END ;

whenpart : WHEN expr [;] THEN [;] statement

Thisinstruction is used for general purpose, nested IF structures. Although it has certain
similaritieswith CASE in Pascal and switch in C, it isin some respects very different from these.
An example of the general use of the SELECT instruction is:

41

select
when exprl then statementl
when exprZ2 then do
statementZa
statement2b
end
when expr3 then statement3
otherwise
ostatementl
ostatement?
end

When the SELECT instruction is executed, the next statement after the SELECT statement must be
aWHEN statement. The expression immediately following the WHEN token is evaluated, and must
result in avalid boolean value. If itistrue (i.e. 1), the statement following the THEN token
matching the WHEN is executed, and afterwards, control is transferred to the instruction following
the END token matching the SELECT instruction. Thisis not completely true, since an instruction
may transfer control elsewhere, and thus implicitly terminate the SELECT instruction; e.g. LEAVE,
EXIT, ITERATE, SIGNAL, or RETURN or acondition trapped by method STGNAL.

If the expression of the first WHEN is not true (i.e. *0), then the next statement must be either
another WHEN or an OTHERWI SE statement. In the former case, the process explained aboveis
iterated. In the latter case, the clauses following the OTHERWISE up to the END statement are
interpreted.

It isconsidered a SYNTAX condition, {7} if no OTHERWI SE statement when none of the WHEN-
expressions evaluates to true. In general this can only be detected during runtime. However, if one
of the WHENS s selected, the absence of an OTHERWISE isnot considered an error.

By the nature of the SELECT instruction, the WHENS are tested in the sequence they occur in the
source. If more than one WHEN have an expression that evaluates to true, the first one encountered is
selected.

If the programmer wants to associate more than one statement with aWwHEN statement, a DO/END
pair must be used to enclose the statements, to make them one statement conceptually. However,
zero, one, or more statements may be put after the OTHERWI SE without having to enclose themin
aDO/END pair. The clause delimiter is optional after OTHERWI SE, and before and after THEN.

Example: Writing SWITCH as IF

Although CASE in Pascal and switch in C arein general table-driven (they check an integer
constant and jumps directly to the correct case, based on the value of the constant), SELECT in
REXX isnot so. It isajust a shorthand notation for nested I F instructions. Thusa SWITCH
instruction can always be written as set of nested TF statements; but for very large SWITCH
statements, the corresponding nested I F structure may be too deeply nested for the interpreter to
handle.

The following code shows how the SWITCH statement shown above can be written asanested IF

42

structure:

if exprl then statementl
else i1f expr2 then do
statement2a
statement2b
end else if expr3 then statement3
else
ostatementl
ostatement?2
end

3.4.15 The SIGNAL Instruction

SIGNAL = { string | symbol } ;
[VALUE] expr ;
{ ON | OFF } condition [NAME
{ string | symbol } 1 ;

The STIGNAL instruction is used for two purposes: (a) to transfer control to anamed label in the
program, and (b) to set up a named condition trap.

The first form in the syntax definition transfers control to the named label, which must exist
somewhere in the program; if it does not exist, a SYNTAX condition { 16} israised. If thelabel is
multiple defined, the first definition is used. The parameter can be either a symbol (which istaken
literally) or astring. If it isastring, then be sure that the case of the string matches the case of the
label where it is defined. In practice, labels are in upper case, so the string should contain only
uppercase letters too, and no space characters.

The second form of the syntax is used if the second token of the instruction is VALUE. Then, the
rest of the instruction is taken as a general REXX expression, which result after evaluation is taken
to be the name of the label to transfer control to. Thisformisreally just a specia case of the first
form, where the programmer is allowed to specify the label as an expression. Note that if the start of
expr issuch that it can not be misinterpreted as the first form (i.e. the first token of expr is neither
astring nor asymbol), then the VALUE subkeyword can be omitted.

Example: Transferring control to inside a loop

When the control of execution istransferred by a STGNAL instruction, al active loops at the current
procedural level are terminated, i.e. they can not continued later, although they can of course be
reentered from the normal start. The consequence of thisis that the following codeisillegal:

do forever
signal there

there:

nop

end

The fact that the jump is altogether within the loop does not prevent the loop from being terminated.
Thus, after the jJump to the loop, the END instruction is attempted executed, which will resultin a
SYNTAX condition { 10} . However, if control is transferred out of the loop after the label, but before
the END, then it would be legdl, i.e. the following islegal:

do forever
signal there

there:

nop

signal after

end

after:

Thisislegal, simply because the END instruction is never seen during this script. Although both
TRL1 and TRL2 allow this construct, it will probably be disallowed in ANSI.

Just as loops are terminated by a STGNAL instruction, SELECT and IF instructions are also
terminated. Thus, it isillegal to jump to alocation within a block of statements contained in a
WHEN, OTHERWISE, or IF instruction, unlessthe control is transferred out of the block before the
execution reaches the end of the block.

Whenever execution is transferred during a STGNAL instruction, the special variable STGL isset to
the line number of the line containing the STGNAL instruction, before the control istransferred. If
thisinstruction extends over several lines, it refersto the first of this. Note that even blanks are part
of aclause, soif the instruction starts with a line continuation, the real line of the instruction is
different from that line where the instruction keyword is located.

The third form of syntax is used when the second token in the instruction is either ON or OFF. In
both cases must the third token in the instruction be then name of a condition (as a constant string or
asymbol, which is taken literally), and the setup of that condition trap is changed. If the second
token is OFF, then the trap of the named condition is disabled.

If the second token is ON, then the trap of the named condition is enabled. Further, in this situation
two more tokens may be allowed in the instruction: the first must be NAME and the second must be
the name of alabel (either as a constant string or a symbol, which istaken literaly). If the five
token form is used, then the label of the condition handler is set to the named label, else the name of
the condition handler is set to the default, which isidentical to the name of the condition itself.

Note that the NAME subclause of the STGNAL instruction was a new construct in TRL2, and is not a
part of TRL1. Thus, older interpreters may not support it.

Example: Naming condition traps

Note that the default value for the condition handler (if the NAME subclause is not specified) isthe
name of the condition, not the condition handler from the previous time the condition was enabled.
Thus, after the following code, the name of the condition handler for the condition SYNTAX is
SYNTAX, not FOOBAR:

signal on syntax name foobar
signal on syntax

Example: Named condition traps in TRL1

A common problem when trying to port REXX code from a TRL2 interpreter to a TRL1 interpreter,
isthat explicitly named condition traps are not supported. There exist waysto circumvent this, like:

syntax name = 'SYNTAX HANDLER'

signal on syntax

if 1 + 2 then /* will generate SYNTAX condition */
nop

syntax:

oldsigl = sigl

signal value translate(syntax name)

syntax handler:
say 'condition at line' oldsigl 'is being handled...'
exit

Here, a"global" variableis used to store the name of the real condition handler, in the absence of a
field for thisin the interpreter. This works fine, but there are some problems: the variable

SYNTAX NAME must be exposed to everywhere, in order to be available at all times. It would be
far better if this value could be stored somewhere from which it could be retrieved from any part of
the script, no matter the current state of the call-stack. This can be fixed with programs like
GLOBALV under VM/CMS and putenv under Unix.

Another problem isthat this destroys the possibility of setting up the condition handler with the
default handler name. However, to circumvent this, add anew DEFAULT SYNTAX HANDLER

|abel which becomes the new name for the old SYNTAX label.

Further information about conditions and condition traps are given in chapter Conditions.

3.4.16 The TRACE Instruction

TRACE [number | setting | [VALUE] expr 1 ;
setting=A | S| C| E|]F | I |]L]|]NI|JO]IJZRI]S

The TRACE instruction is used to set atracing mode. Depending on the current mode, various levels
of debugging information is displayed for the programmer. Also interactive tracing is allowed,
where the user can re-execute clauses, change values of variables, or in general, execute REXX
code interactively between the statements of the REXX script.

If setting is not specified, then the default value N is assumed. If the second token after TRACE is
VALUE, then the remaining parts of the clause is interpreted as an expression, which valueis used
asthe trace setting. Else, if the second token is either a string of a symbol, then it is taken as the
trace setting; and a symbol istaken literally. In all other circumstances, whatever follows the token
TRACE istaken to be an expression, which value is the trace setting.

45

If a parameter is given to the TRACE instruction, and the second token in the instruction is not
VALUE, then there must only be one token after TRACE, and it must be either a constant string or a
symbol (which istaken literally). The value of this token can be either awhole number or atrace
Setting.

If isit awhole number and the number is positive, then the number specifies how many of
interactive pauses to skip. This assumes interactive tracing; if interactive tracing is not enabled, this
TRACE instruction isignored. If the parameter is awhole, negative number, then tracing is turned
off temporarily for anumber of clauses determined by the absolute value of number.

If the second token is a symbol of string, but not a whole number, then it is taken to be one of the
settings below. It may optionally be preceded by one or more question mark (?) characters. Of the
rest of the token, only the first letter matter; this letter is transated to upper case, and must be one of
the following:

[A]
(All) Traces all clauses before execution.

[C]
(Commands) Traces all command clauses before execution.

[E]
(Errors) Traces any command that would raise the ERROR condition (whether enabled or
not) after execution. Both the command clause and the return value is traced.

[F]
(Failures) Trances any command that would raise the FATLURE condition (whether enabled
or not) after execution. Both the command clause and the return value is traced.

[I]
(Intermediate) Traces not only all clauses, but also traces all evaluation of expressions; even
intermediate results. Thisisthe most detailed level of tracing.

[L]
(Labels) Traces the name of any label clause executed; whether the label was jumped to or
not.

[N]
(Normal or Negative) Thisisthe same asthe Failure setting.

[O]
(Off) Turns off all tracing.

[R]
(Results) Traces all clauses and the results of evaluating expressions. However, intermediate
expressions are not traced.

TheErrors and Failures settings are not influenced by whether the ERROR or FATILURE

46

conditions are enabled or not. These TRACE settings will trace the command and return value after
the command have been executed, but before the respective condition is raised.

The levels of tracing might be set up graphically, asin the figure below. An arrow indicates that the
setting pointed to is a superset of the setting pointed from.

/-> Failures -> Errors -> Commands
Off \
\-———- > Labels -—-————-- > All -> Results -> Intermediate

Hierarchy of TRACE settings

According to thisfigure, Intermediate isasuperset of Result, whichisasuperset of A11.
Further, A11 isasuperset of both Commands and Labels. Commands isasuperset of Errors,
which isasuperset of Failures. Both Failure and Labels aresupersetsof Of £. Actually,
Command is strictly speaking not asuperset of Errors, Snce Errors traces after the command,
while Command traces before the command.

Scan isnot part of this diagram, since it provides a completely different tracing functionality. Note
that Scan ispart of TRL1, but wasremoved in TRL2. It isnot likely to be part of newer REXX
interpreters.

3.4.17 The UPPER Instruction
UPPER symbol [symbol [symbol [...]] 1 ;

The UPPER instruction is used to translate the contents of one or more variables to uppercase. The
variables are translated in sequence from left to right.

Each symbol is separated by one or more blanks.
While it is more convenient and probably faster than individual callsto TRANSLATE, UPPER is
not part of the ANSI standard and is not common in other interpreters so should be avoided. Itis

provided to ease porting of programs from CMS.

Only simple and compound symbols can be specified. Specification of a stem variable resultsin an
error.

a7

3.5 Advanced Instructions

3.5.1 The ADDRESS Instruction

ADDRESS = [environment [command] [redirection] 1 ;
[[VALUE] expr [redirection]] ;
redirection : = WITH input redir [output redir] [error redir]
WITH input redir [error redir] [output redir]
WITH output redir [input redir] [error redir]
WITH output redir [error redir] [input redir]
WITH error redir [input redir] [output redir]
WITH error redir [output redir] [iInput redir]
input redir : = INPUT NORMAL
INPUT io
output redir : = OUTPUT NORMAL

OUTPUT [APPEND | REPLACE] 1o

error redir : = ERROR NORMAL

ERROR [APPEND | REPLACE] io
io = { STREAM | STEM | LIFO | FIFO } symbol
{ STREAM | LIFO | FIFO } string

Wewill discuss redirection later.

The ADDRESS instruction controls where commands to an external environment are sent. If both
environment and command are specified, the given command will be executed in the given
environment. The effect is the same as issuing an expression to be executed as a command (see
section Commands), except that the environment in which it is to be executed can be explicitly
specified inthe ADDRESS clause. In this case, the special variable RC will be set as usual, and the
ERROR Or FATLURE conditions might be raised, as for normal commands. Starting with Regina
3.0 the special variables . RC and . RS are set too, according to the ANS| standard.

In other words: All normal commands are ADDRESS statements with a suppressed keyword and
environment.

The environment term must be a symbol or aliteral string. If it isa symbol, its"name" isused, i.e. it
isnot tail substituted or swapped for a variable value. The command and expression terms can be
any REXX expression. eg.

SYSTEM="'PATH'
ADDRESS SYSTEM "echo Hello"

isequivalent to aplain

ADDRESS SYSTEM "echo Hello"

or
ADDRESS "SYSTEM" "echo Hello"

for the external echo command.
A symbol specified as an environment name isn't case-sensitive, whereas a string must match the
case. Built-in environments are always uppercased.

REXX maintains alist of environments, the size of thislist isat least two. If you select a new
environment, it will be put in the front of thislist. Note that if command is specified, the contents of
the environment stack is not changed. If you omit command, environment will always be put in the
front of the list of environments. Regina has aninfinite list and never pushes out any entry.
Possible values are listed below. If you supply a command with the ADDRESS statement, the
environment is interpreted as a temporary change for just this command.

What happensif you specify an environment that is aready in the list, is not completely defined.
Strictly speaking, you should end up with both entriesin the list pointing to the same environment,
but some implementations will probably handle this by reordering the list, leaving the selected
environment in the front. Thisis Reginas behavior. Every environment exists only once. The
redirection command below always changes the behavior of one -- the given -- environment. You
can imagine a set of playing cardsin your hand. The operation isto draw one card by name and put
it to the front.

If you do not specify any subkeywords or parameters to ADDRESS, the effect is to swap the two
first entriesin the list of environments. Consequently, executing ADDRESS multiple times will
toggle between two environments.

The second syntax form of ADDRESS isaspecia case of the first form with command omitted. If
the first token after ADDRESS iISVALUE, then the rest of the clause is taken to be an expression,
naming the environment which isto be made the current environment. Using VALUE makes it
possible to circumvent the restriction that the name of the new environment must be a symbol or
literal string. However, you can not combine both VALUE and command in asingle clause.

Example: Examples of the ADDRESS instruction
Let'slook at some examples, they can sometimes be combined with aredirection:
ADDRESS COMMAND
ADDRESS SYSTEM 'copy' fromfile tofile
ADDRESS system
ADDRESS VALUE newenv
ADDRESS

ADDRESS (oldenv)

Thefirst of these sets the environment COMMAND as the current environment.

49

The second performs the command ' copy ' in the environment SYSTEM, using the values of the
symbols fromfile and tofile asparameters. Note that thiswill not set SYSTEM as the current
environment.

The third example sets SYSTEM as the current environment (it will be automatically converted to
upper case).

The fourth example sets as the current environment the contents of the symbol newenv, pushing
SYSTEM down one level in the stack.

The fifth clause swaps the two uppermost entries on the stack; and SYSTEM ends up at the top
pushing the environment specfied in newenv below it.

The sixth clause is equivalent to the fourth example, but is not allowed by ANSI. Since Regina 3.0
this style is deprecated and can't be used if OPTIONS STRICT ANSI isin effect. Again, avoid
thiskind of ADDRESS statement style, and use the VALUE version instead.

Example: The VALUE subkeyword

Let uslook abit closer at the last example. Note the differences between the two clauses:
ADDRESS ENV

ADDRESS VALUE ENV

Thefirst of these sets the current default environment to ENV, while the second sets it to the value
of the symbol ENV.

If you are still confused, don't Panic; the syntax of ADDRESS is somewhat bizarre, and you should
not put too much effort into learning all aspects of it. Just make sure that you understand how to use
it in simple situations. Chances are that you will not have use for its more complicated variants for
quite some time.

Then, what names are legal as environments? Well, that is implementation-specific, but some
names seems to be in common use. The name COMMAND is sometimes used to refer to an
environment that sends the command to the operating system. Likewise, the name of the operating
system is often used for this (CMS, UNIX, etc.). You have to consult the implementation specific
documentation for more information about this. Actually, there is not really any restrictions on what
constitutes alegal environment name (even the nullstring islegal). Some interpreters will alow you
to select anything as the current environment; and if it isan illegal name, the interpreter will
complain only when the environment is actually used. Other implementations may not allow you to
select an invalid environment name at all.

Regina allows every name as an environment name. Regina gives an error message about wrong
names only when the name is used. The error string looks somewhat strange if Regina isused asa
separate program, since the extension of the environment name space is only useful when running
as part of a program which extends the standard names.

Regina uses three kinds of environments. Some have alias names. The environment names are:

50

SYSTEM
alias OS2ENVIRONMENT
alias ENVIRONMENT

Thisisthe default environment which is selected at startup. The standard operating system
command line interpreter will be loaded to execute the commands. You can use the built-in
commands of the command line interpreter, often called shell, or any other program which
the command line interpreter can find and load.

COMMAND
alias CMD
alias PATH

This environment loads the named program directly. You may supply apath if thisis needed
for the current operating system to load the program, otherwise Regina uses the standard
operating system search rules for programs. Thisis done by searching through the items of
the PATH system-environment variable in most operation systems. You can't use built-in
shell functionality like system redirections like you can with SY STEM. Regina's
redirections are more powerful and work in either environment.

REXX
alias REGINA

This environment uses a new instance of the Regina interpreter program to execute a
program. The program has to be a REXX script. This environment has several advantages.
The output of ascript can be redirected, the process isindependent and arisk of acrashis
minimized when playing with externa libraries, finally, Regina itself triesto find the
correct REXX interpreter by itself and does everything to create a new incarnation of
Regina.

The definition of REXX says nothing about which environment is presel ected when you invoke the
interpreter, although TRL defines that one environment is automatically presel ected when starting
up a REXX script. Note that there is no NONE environment in standard REXX, i.e. an environment
that ignores commands, but some interpreters implement the TRACE setting ??? to accomplish this.
Regina uses the environment SYSTEM as the preselected environment as mentioned above. More

implementation specific details can be found in the section implementation specific documentation
for Regina.

The list of environments will be saved across subroutine calls; so the effect of any ADDRESS
clauses in a subroutine will cease upon return from the subroutine.

ADDRESS Redirections

ANSI defines redirections for the ADDRES S statement. This feature has been missing from Regina
until version 3.0; although you have had the chance to redirect input and output by using L I FO>
and >FI FO modifiers on command strings.

These command modifiers still exist and have a higher precedence than the ANSI defined

51

redirections. Note, that L1FO and FIFO can be used by the newer redirection system. But, first of
all, some examples show the usage of ADDRESS redirections.

ADDRESS SYSTEM "sort" WTH | NPUT STEM nanmes. OUTPUT STEM
nanes.

ADDRESS SYSTEM "nyprog" W TH | NPUT STEM sonef ood. OUTPUT
STREAM ' prg. out' ERROR STEM oops.

ADDRESS PATH W TH I NPUT FI FO '' OUTPUT NORVAL
ADDRESS SYSTEM W TH I NPUT FI FO '* OUTPUT FI FO '" ERROR NORMAL
ADDRESS SYSTEM "fgrep 'bongo'" WTH | NPUT STREAM ' f eeder"’

The first command instructs the default command line interpreter to call the program called sort.
The input for the command is read from the stem names. (note the trailing period) and the output is
sent back to the same stem variable after the command terminates. Thus, bothering about the
implementation of afast sort algorithm for a stem is as simple as calling a program which can
actually do the sort.

A program called myprog is called in the second case. The input is fetched from the stem somefood.
(again note the trailing period), and the standard output of the program is redirected to the stream
called prg.out. Any generated error messages viathe standard error stream are redirected to the stem
called oops.

In the third example, the redirection behavior of the environment PATH is changed for all future
uses. Theinput for all commands addressed to this environment is fetched from the standard stack
in FIFO order. After each call the stack will be flushed. The output is sent to the default output
stream, which is the current console in most cases. The behavior for error messages is not changed.

The fourth example allows pipes between commands in the environment; SY STEM for all future
uses. Theinput is fetched from the default stack and sent to the default stack after each command.
The stack itself is flushed in between. Each executed program will write to something which isthe
input to the next called command. The error redirection is set or set back to the initial behavior of
writing to the standard error stream.

The fifth example relates to the fourth. The default stack has to be filled with something initially.
Thisis done by the redirection to the stream “feeder” while writing the output of the fgrep
command to the default FIFO as declared in example four. After this, asingle line with asimple
sort command will sort the output of fgrep and place it in the default stack. You can fetch the final
output of your pipe cascade by reading the stack contents. This statement overwrites some of the
rules of the fourth example temporarily.

Y ou can see the powerful possibilities of the redirection command. The disadvantage is the loss of a
direct overview of what happens after a permanent redirection command has executed.

Its now the time to show you all rules and semantics of the redirection.

52

Rules for the redirection by the keyword WITH of the ADDRESS statement:

Every environment has its own default redirection set.

Every redirection set consists of three independent redirection elements; standard input
(INPUT), standard output (OUTPUT) and standard error (ERROR). Users with some experiences
with Unix, DOS & Windows or OS/2 may remember the redirection commands of the command
line interpreter which can redirect each of the streams, too. Thisis nearly the same.

Each redirection element starts with the program-startup streams given to REXX when invoking
the interpreter. These can be reset to the startup default by specifying the argument NORMAL for
each redirection element.

The sequence of the redirection elementsisirrelevant.

You can specify each redirection element only once per statement.

Redirections can be intermixed. This means you can let both the OUTPUT and the ERROR
redirection point to the same "thing". The data from the different channels will be put to the
assigned "thing" asthey arrive. ANSI's point of view isn't very clear at this point. They state to
keep the output different for files and put them together after the called program finished while
the data shall be mixed at once when using stems.

Regina always mixes the fetched data at once if possible.

Redirections from and to the same source/destination try to keep the data consistent. If the
INPUT/OUTPUT pair or the INPUT/ERROR pair points to the same destination, the content of
the input or output channel is buffered so that writing to the output won't overwrite the input.

A redirection element is entered by its name (e.g. INPUT), aredirection processor (e.g.
STREAM) and a destination symbol (e.g. OUT_FN) following the rules to the redirection
processor. This means that you have to enter a dot after a symbol name for a stem, or any symbol
for the rest of the processors, in which case the content of the symbol is used as for normal
variables.

Both OUTPUT and ERROR streams can replace or append the data to the destination. Simply
append either APPEND or REPLACE immediately after the OUTPUT or ERROR keywords.
REPLACE isthe default.

The destination is checked or cleared prior to the execution of the command.

ANSI defines two redirection processors. STEM and STREAM. The processors LIFO and FIFO
are alowed extensions to the standard.

The processor STEM uses the content of the symbol destination.O to access the count of the
currently accessible lines. destination is the given destination name, of course. destination.0 must
be filled with awhole, non-negative number in terms of the DATATY PE built-in function. Each
of n lines can be addressed by appending the whole numbers one to n to the stem. Example:
STEM foo. is given, FOO.0 contains 3. This indicates three content lines. They are the contents
of the symbols FOO.1 and FOO.2 and FOO.3.

The processor STREAM uses the content of the symbol destination to use a stream as known in
the STREAM built-in function. The usage is nearly equivalent to the commands LINEIN
destination or LINEOUT destination for accessing the contents of the file. An empty variable
(content set to the empty string) as the content of the destination is allowed and indicates the
default input, output or error streams given to the REXX program. Thisis equivalent to the
NORMAL keyword.

The processor 1.1 FO uses the content of the symbol destination as a queue name. New lines are
pushed in last-in, first-out order to the queue. An empty destination string is allowed and
describes the default queue. Lines are fetched from the queue if this processor is used for the
INPUT stream.

The processor FIFO uses the content of the symbol destination as a queue name. New lines are

53

pushed in first-in, first-out order to the queue. An empty destination string is alowed and
describes the default queue. Lines are fetched from the queue if this processor is used for the
INPUT stream.

On INPUT, al the datain the input stream is read up to either the end of the input data or until
the called process terminates. The latter one may be determined after feeding up the input stream
of the called process with unused data. Thus, thereisno way to say if datais used or not. This
isn't aproblem with STEMs. But al file related sequential access objectsincluding LT Fos and
FIFOsmay have lost data between two calls. Imagine an input file (STREAM) with three lines:

One line
DELIMITER
Second line

and furthermore two processes pl and p2 caled WITH INPUT STREAM f withf containing the
three lines above. pl reads lines up until aline containing DELIMITER and p2 processes the
rest. It isvery likely that the second process won't fetch any line because the stream may be
processed by REXX, and REXX may has put one or more lines ahead into the feeder pipe to the
process. This might or might not happen. It isimplementation dependent and Regina shows this
behavior. The input object is checked for existence and if it is properly set up before the
command is started.

In short: INPUT may or may not use the entire input.

Both OUTPUT and ERROR objects are checked for being properly set up just before the
command starts. REPLACE isimplemented as a deletion just before the command starts. Note
that ANSI doesn't force STEM lines to be dropped in case of areplacement. A big stem with
thousands of lineswill still exist after a replacement operation if the called command doesn't
produce any output. Just destination.O is set to 0.

The redirection of commands is a mystery to many people and it will continue be. You can
thank all the people who designed stacks, queues, pipelines and all the little helper utilities
of a witch's kitchen of process management.

3.5.2 The DROP Instruction
DROP symbol [symbol ... 1 ;

The DROP instruction makes the named variables uninitialized, i.e. the same state that they had at
the startup of the program. The list of variable names are processed strictly from left to right and
dropped in that order. Consequently, if one of the variablesto be dropped is used in atail of
another, then the order might be significant. E.g. the following two DROP instructions are not
equivalent:

bar = 'a'
drop bar foo.bar /* drops 'BAR' and 'FOO.BAR' */
bar = 'a'

drop foo.bar bar /* drops 'FOO.a' and 'BAR'
The variable terms can be either a variable symbol or a symbol enclosed in parentheses. The former

form isfirst tail-substituted, and then taken as the literal name of the symbol to be dropped. The
result names the variable to drop. In the latter form, the value of the variable symbol inside the

54

parentheses is retrieved and taken as a space separated list of symbols. Each of these symbolsistail-
substituted (if relevant); and the result is taken as the literal name of a variable to be dropped.
However, this process is not recursive, so that the list of names referred to indirectly can not itself
contain parentheses. Note that the second form was introduced in TRL2, mainly in order to make
INTERPRET unnecessary.

In general, things contained in parentheses can be any valid REXX expression, but this does not
apply to the DROP, PARSE, and PROCEDURE instructions.

Example: Dropping compound variables

Note a potential problem for compound variables: when a stem variable is set, it will not set a
default value, rather it will assign "all possible variables' in that stem collection at once. So
dropping a compound variable in a stem collection for which the stem variable has been set, will set
that compound variable to the original uninitialized value; not the value of the stem variable. See
section Assign for further notes on assignments. To illustrate consider the code:

foo. = 'default'
drop baz bar foo.bar
say foo.bar foo.baz /* says 'FOO.BAR default' */

In this example, the SAY instruction writes out the value of the two compound variables FOO . BAR
and FOO . BAZ. When performing tail-substitution for these, the interpreter finds that both BAR and
BAZ are uninitialized. Further, FOO . BAR has also been made uninitialized, while FOO . BAZ hasthe
value assigned to it in the assignment to the stem variable.

Example: Tail-substitution in DROP

For instance, suppose that the variable FOO hasthe value bar. After being dropped, FOO will have
its uninitialized value, which is the same as its name: FOO. If the variable to be dropped is a stem
variable, then both the stem variable and all compound variables of that stem become uninitialized.

bar = 123
drop foo.bar /* drops 'F00.123' */

Technically, it should be noted that some operations involving dropping of compound variables can
be very space consuming. Even though the standard does not operate with the term "default value"
for the value assigned to a stem variable, that isthe way in which it is most likely to be
implemented. When a stem is assigned a value, and some of its compound variables are dropped
afterwards, then the interpreter must use memory to store references to the variables dropped. This
might seem counterintuitive at first, since dropping ought to release memory, not allocate more.

Thereisaparallel between DROP and PROCEDURE EXPOSE. However, there is one important
difference, although PROCEDURE EXPOSE will expose the name of avariable enclosed in
parentheses before starting to expose the symbols that variable refers to, thisis not so for DROP. If
DROP had mimicked the behavior of PROCEDURE EXPOSE in this matter, then the whole purpose
of indirect specifying of variablesin DROP would have been defeated.

55

Dropping a variable which does not have a value is not an error. There is no upper limit on
the number of variables that can be dropped in one DROP clause, other than restrictions on
the clause length. If an exposed variable is dropped, the variable in the caller is dropped,
but the variable remains exposed. If it reassigned a value, the value is assigned to a
variable in the caller routine.

3.5.3 The INTERPRET Instruction
INTERPRET expr ;

The INTERPRET instruction is used to dynamically build and execute REXX instructions during
run-time. First, it evaluates the expression expr, and then parses and interprets the result as a
(possibly empty) list of REXX instructions to be executed. For instance:

foo = 'hello, world'
interpret 'say "'foo'!"!

executes the statement SAY "hello, world!" after having evaluated the expression following
INTERPRET. This example shows several important aspects of INTERPRET. Firstly, it's very easy
to get confused by the levels of quotes, and a bit of caution should be taken to nest the quotes
correctly. Secondly, the use of INTERPRET does not exactly improve readability.

Also, INTERPRET will probably increase execution time considerably if put inside loops, since the
interpreter may be forced to reparse the source code for each iteration. Many optimizing REXX
interpreters (and in particular REXX compilers) haslittle or no support for INTERPRET. Since
virtually anything can happen inside it, it is hard to optimize, and it often invalidates assumptionsin
other parts of the script, forcing it to ignore other possible optimizations. Thus, you should avoid
INTERPRET when speed is at a premium.

There are some restrictions on which statements can be inside an INTERPRET statement. Firstly,
labels cannot occur there. TRL states that they are not allowed, but you may find that in some
implementations labels occurring there will not affect the label symbol table of the program being
run. Consider the statement:

interpret 'signal there; there: say hallo’
there:

This statement transfers control to the label THERE in the program, never to the THERE label inside
the expression of the INTERPRET instruction. Equivalently, any STGNAL to alabel THERE
elsewhere in the program never transfers control to the label inside the INTERPRET instruction.
However, labels are strictly speaking not allowed inside INTERPRET strings.

Example: Self-modifying Program

Thereisan ideafor aself-modifying program in REXX which is basically likethis:

56

string = "'

do i1=1 to sourceline /()

string = string ';' sourceline (i)
end
string = transform(string)
interpret string
exit

transform: procedure
parse arg string
/* do some transformation on the argument */
return string

Unfortunately, there are several reasons why this program will not work in REXX, and it may be
instructive to investigate why. Firstly, it uses the label TRANSFORM, which isnot alowed in the
argument to INTERPRET. The interpret will thus refer to the TRANSFORM routine of the
"outermost” invocation, not the one "in" the INTERPRET string.

Secondly, the program does not take line continuations into mind. Worse, the SOURCELINE ()
built-in function refers to the data of the main program, even inside the code executed by the
INTERPRET insgtruction. Thirdly, the program will never end, asit will nest itself up till an
implementation-dependent limit for the maximum number of nested INTERPRET instructions.

In order to make thisidea work better, temporary files should be used.

On the other hand, loops and other multi-clause instructions, like TF and SELECT occur inside an
INTERPRET expression, but only if the whole instruction is there; you can not start a structured
instruction inside an INTERPRET instruction and end it outside, or vice-versa. However, the
instruction STGNAL is allowed even if the label isnot in the interpreted string. Also, the instructions
ITERATE and LEAVE are allowed in an INTERPRET, even when they refer to aloop that is
externa to the interpreted string.

Most of thetime, INTERPRET is not needed, although it can yield compact and interesting code. If
you do not strictly need INTERPRET, you should consider not using it, for reasons of compatibility,
speed, and readability. Many of the traditional uses of INTERPRET have been replaced by other
mechanismsin order to decrease the necessity of INTERPRET; e.g. indirect specification of
variablesin EXPOSE and DROP, the improved VALUE () built-in function, and indirect
specification of patternsin templates.

Only semicolon (;) is allowed as a clause delimiter in the string interpreted by an
INTERPRET instruction. The colon of labels can not be used, since labels are not allowed.
Nor does specific end-of-line character sequences have any defined meaning there.
However, most interpreters probably allow the end-of-line character sequence of the host
operating system as alternative clause delimiters. It is interesting to note that in the context
of the INTERPRET instruction, an implicit, trailing clause delimiter is always appended to
the string to be interpreted.

57

3.5.4 The OPTIONS Instruction
OPTIONS expr ;

The OPTTIONS instruction is used to set various interpreter-specific options. Itstypical uses are to
select certain REXX dialects, enable optimizations (e.g. time versus memory considerations), etc.
No standard dictates what may follow the OPTTONS keyword, except that it should be avalid
REXX expression, which is evaluated. Currently, no specific options are required by any standard.

The contents of expr is supposed to be word based, and it is the intention that more than one option
can be specified in one OPTIONS instruction. REXX interpreters are specifically instructed to
ignore OPTIONS words which they do not recognize. That way, a program can use run-time
options for one interpreter, without making other interpreters trip when they see those options. An
example of OPTION may be:

OPTIONS 4.00 NATIVE FLOAT

The instruction might instruct the interpreter to start enforcing language level 4.00, and to use
native floating point numbersin stead of the REXX arbitrary precision arithmetic. On the other
hand, it might also be completely ignored by the interpreter.

It is uncertain whether modes selected by 0PTIONS will be saved across subroutine calls. Refer to
implementation-specific documentation for information about this.

Example: Drawback of OPTIONS

Unfortunately, the processing of the OPTTONS instruction has a drawback. Since an interpreter is
instructed to ignore option-settings that it does not understand, it may ignore options which are
essential for further processing of the program. Continuing might cause afatal error later, although
the behavior that would most precisely point out the problem is a complaint about the non-
supported OPTION setting. Consider:

options 'cms bifs'
pos = find(haystack, needle)

If this code fragment is run on an interpreter that does not support the cms_bifs option
setting, then the OPTIONS instruction may still seem to have been executed correctly.
However, the second clause will generally crash, since the FIND () function is still not
available. Even though the real problem is in the first line, the error message is reported
for the second line.

3.5.5 The PULL Instruction
PULL [template] ;

This statement takes a line from the top of the stack and parse it into the variables in the template. It
will also trandate the contents of the line to uppercase.

58

This statement isequivalent to PARSE UPPER PULL [template | withthe same exception as
explained for the ARG instruction. See chapter [not yet written] for a description of parsing and
chapter Stack for a discussion of the stack.

3.5.6 The PUSH Instruction
PUSH [expr] ;

The PUSH instruction will add a string to the stack. The string added will either be the result of the
expr, or the nullstring if expr is not specified.

The string will be added to the top of the stack (LIFO), i.e. it will be the first line normally extracted
from the stack. For a thorough discussion of the stack and the methods of manipulating it, see
chapter Stack for a discussion of the stack.

3.5.7 The QUEUE Instruction
QUEUE [expr] ;

The QUEUE instruction isidentical to the PUSH instruction, except for the position in the stack
where the new lineisinserted. While the PUSH puts the line on the "top" of the stack, the QUEUE
instruction inserts it at the bottom of the stack (FIFO), or in the bottom of the topmost buffer, if
buffers are used.

For further information, refer to documentation for the PUSH instruction, and see chapter
Stack for general information about the stack.

59

3.6 Operators

An operator represents an operation to be carried out between two terms, such asdivision. There are
5 types of operators in the Rexx Language: Arithmetic, Assignment, Comparative, Concatenation,
and Logical Operators. Each isdescribed in further details below.

3.6.1 Arithmetic Operators

Arithmetic operators can be applied to numeric constants and Rexx variables that evaluate to valid
Rexx numbers. The following operators are listed in decreasing order of precedence:

- Unary prefix. Same as 0 - number.

+ Unary prefix. Same as 0 + number.
*x Power
* Multiply
Divide
% Integer divide. Divide and return the integer part of the division.
Il Remainder divide. Divide and return the remainder of the division.
+ Add
- Subtract.

3.6.2 Assignment Operators

Assignment operators are a means to change the value of avariable. Rexx only has one assignment
operator.

= Assign the value on theright side of the "=" to the variable on the | eft.

3.6.3 Comparative Operators

The Rexx comparative operators compare two terms and return the logical value 1 if the result of
the comparison istrue, or O if the result of the comparison is false. The non-strict comparative
operators will ignore leading or trailing blanks for string comparisons, and leading zeros for
numeric comparisons. Numeric comparisons are made if both terms to be compared are valid Rexx
numbers, otherwise string comparison is done. String comparisons are case sensitive, and the
shorter of the two strings is padded with blanks.

The following lists the non-strict comparative operators.

= Equal

=, M= Not equal

> Greater than.

< Lessthan.

>= Greater than or equal.
<= Less than or equal

<>, >< Greater than or less than. Same as Not equal .

The following lists the strict comparative operators. For two strings to be considered equal when

60

using the strict equal comparative operator, both strings must be the same length.

== Strictly equal

\==, "==Strictly not equal.

>> Strictly greater than.

<< Strictly less than.

>>= Strictly greater than or equal.
<<= Strictly less than or equal.

3.6.4 Concatenation Operators

The concatenation operators combine two strings to form one, by appending the second string to the
right side of the first. The Rexx concatenation operators are:

(blank) Concatenation of strings with one space between them.
(abuttal) Concatenation of strings with no intervening space.
[l Concatenation of strings with no intervening space.

Examples:
a = abc;b = 'def'
Say a b -> results in 'abc def'
Say a || b -> results in 'abcdef'
Say a'xyz' -> results in 'abcxyz'

3.6.5 Logical Operators

Logical operators work with the Rexx strings 1 and O, usually as aresult of a comparative operator.
These operators also only result in logical TRUE; 1 or logical FALSE; 0.

& And Returns 1 if both terms are 1.

| Inclusive or Returns 1 if either termis 1.

& & Exclusiveor Returns 1 if either termis 1 but NOT both terms.
\ Logical not Reverses the result; 0 becomes 1 and 1 becomes 0.

61

4 REXX Built-in Functions

This chapter describes the REXX library of built-in functions. It is divided into three parts:

¢ First ageneral introduction to built-in functions, pointing out concepts, pitfalls, parameter
conventions, peculiarities, and possible system dependencies.

¢ Then thereisthe reference section, which describes in detail each function in the built-in
library.

¢ At the end, there is documentation that describes where and how Regina differs from standard
REXX, as described in the two other sections. It also lists Regina's extensions to the built-in
library.

It isrecommended that you read the first part on first on first reading of this documentation, and
that you use the second part as reference. The third part is only relevant if you are going to use
Regina.

4.1 General Information

This section is an introduction to the built-in functions. It describes common behavior, parameter
conventions, concepts and list possible system-dependent parts.

4.1.1 The Syntax Format

In the description of the built-in functions, the syntax of each oneislisted. For each of the syntax
diagrams, the parts written in italic font names the parameters. Terms enclosed in [square brackets]
denote optiona elements. And the courier font is used to denote that something should be
written asis, and it is also used to mark output from the computer. At the right of each function
syntax is an indication of where the function is defined.

(ANSI) ANS| Standard for REXX 1996
(EXT-ANSI) Extended REXX

(SAA) System Application Architecture - IBM
(0S/2) IBM OS2 REXX

(CMYS) REXX on CMS

(AREXX) AREXX onAmiga

(REGINA) Additional function provided by Regina

Definitions of the AREXX built-in functions have been taken verbatim from
http://dfduck.homeip.net/dfd/ados/arexx/main.shtml

Note that in standard REXX it isnot really allowed to let the last possible parameter be empty if al

62

http://dfduck.homeip.net/dfd/ados/arexx/main.shtml

commas are included, although some implementations alow it. In the following calls:

say D2X(61)
say D2X(61, 1)
say D2X(61,)

The two first return the string consisting of a single character 2, while the last should return error. If

the last argument of afunction call is omitted, you can not safely include the immediately preceding
comma

4.1.2 Precision and Normalization

The built-in library uses its own internal precision for whole numbers, which may be the range from
-999999999 to +999999999. That is probably far more than you will ever need in the built-in
functions. For most functions, neither parameters nor return values will be effected by any setting
of NUMERIC. Inthe few cases where this does not hold, it is explicitly stated in the description of
the function.

In general, only parameters that are required to be whole numbers are used in the internal precision,
while numbers not required to be whole numbers are normalized according to the setting of
NUMERIC before use. But of course, if a parameter is anumeric expression, that expression will be
calculated and normalized under the settings of NUMERIC beforeit is given to the function asa
parameter.

4.1.3 Standard Parameter Names

In the descriptions of the built-in functions, several generic names are used for parameters, to
indicate something about the type and use of that parameter, e.g. valid range. To avoid repeating the
same information for the majority of the functions, some common "rules’ for the standard
parameter names are stated here. These rulesimplicitly apply for the rest of this chapter.

Note that the following list does not try to classify any general REXX "datatypes’, but provides a
binding between the sub-datatypes of strings and the methodology used when naming parameters.

¢ Length is anon-negative whole number within the internal precision of the built-in functions.
Whether it denotes a length in characters or in words, depends on the context.

¢ Sring can be any normal character string, including the nullstring. There are no further
requirements for this parameter. Sometimes a string is called a"packed string" to explicitly
show that it usually contains more than the normal printable characters.

¢ Optionisused in some of the functions to choose a particular action, e.g. in DATE () to set the
format in which the date is returned. Everything except the first character will be ignored, and
case does not matter. note that the string should consequently not have any leading space.

¢ Sartisapositive whole number, and denotes a start position in e.g. astring. Whether it refersto
characters or words depends on the context. The first position is always numbered 1, unless
explicitly stated otherwise in the documentation. Note that when return values denotes
positions, the number 0 is generally used to denote a nonexistent position.

63

¢ Padchar must be a string, exactly one character long. That character is used for padding.

¢ Sreamidisastring that identifiesa REXX stream. The actual contents and format of such a
string is implementation dependent.

¢ Number isany valid REXX number, and will be normalized according to the settings of
NUMERIC beforeit isused by the function.

If you see one of these names having a number appended, that is only to separate several parameters
of the sametype, e.g. stringl, string2 etc. They still follow the rules listed above. There are severd
parameters in the built-in functions that do not easily fall into the categories above. These are given
other names, and their type and functionality will be described together with the functionsin which
they occur.

4.1.4 Error Messages

There are several errors that might occur in the built-in functions. Just one error message is only
relevant for all the built-in functions, that is number 40 (Incorrect call to routine). In fact, an
implementation of REXX can choose to use that for any problem it encounters in the built-in
functions. Regina also provides further information in errorsin built-in functions, as defined by the
ANSI standard. This additional information is provided as sub-error messages and usually provide a
more detailed explanation of the error.

Depending on the implementation, other error messages might be used aswell. Error message
number 26 (Invalid whole number) might be used for any case where a parameter should have been
awhole number, or where awhole number is out of range. It isimplied that this error message can
be used in these situations, and it is not explicitly mentioned in the description of the functions.

Other general error messages that might be used in the built-in functions are error number 41 (Bad
arithmetic conversion) for any parameter that should have been avalid REXX number. The error
message 15 (Invalid binary or hexadecimal string) might occur in any of the conversion routines
that converts from binary or hexadecimal format (B2X (), X2B (), X2C (), X2D ()). And of course
the more general error messages like error message 5 (Machine resour ces exhausted) can occur.

Generdly, it istaken as granted that these error messages might occur for any relevant built-in
function, and this will not be restated for each function. When other error messages than these are
relevant, it will be mentioned in the text.

In REXX, it isin genera not an error to specify a start position that is larger than the length of the
string, or alength that refers to parts of a string that is beyond the end of that string. The meaning of
such instances will depend on the context, and are described for each function.

4.1.5 Possible System Dependencies

Some of the functionsin the built-in library are more or less system or implementation dependent.
The functionality of these may vary, so you should use defensive programming and be prepared for
any side-effects that they might have. These functionsinclude:

¢ ADDRESS () isdependent on your operating system and the implementation of REXX, since
thereis no standard for naming environments.

64

ARG () at themain level (not in subroutines and functions) is dependent on how your
implementation handles and parses the parameters it got from the operating system. It isaso
dependent on whether the user specifies the -a command line switch.

BITAND (), BITOR () and BITXOR () are dependent on the character set of your machine.
Seemingly identical parameterswill in genera return very different results on ASCII and
EBCDIC machines. Results will be identical if the parameter was given to these functions as a
binary or hexadecimal literal.

C2X(),C2D(),D2C () and x2C () will be effected by the character set of your computer
since they convert to or from characters. Note that if C2X () and C2D () get their first
parameter as a binary or hexadecimal literal, the result will be unaffected by the machine type.
Also note that the functions B2X (), X2B (), X2D () and D2X () are not effected by the
character set, since they do not use character representation.

CHARIN (), CHAROUT (), CHARS (), LINEIN (), LINEOUT (), LINES () and STREAM ()
are the interface to the file system. They might have system dependent peculiarities in several
ways. Firstly, the naming of streamsis very dependent on the operating system. Secondly, the
operation of stream is very dependent on both the operating system and the implementation. You
can safely assume very little about how streams behave, so carefully read the documentation for
your particular implementation.

CONDITION () isdependent on the condition system, which in turn depends on such
implementation dependent things as file 1/0 and execution of commands. Although the general
operation of thisfunction will be fairly equal among systems, the details may differ.

DATATYPE () and TRANSLATE () know how to recognize upper and lower case letters, and
how to transform letters to upper case. If your REXX implementation supports national
character sets, the operation of these two functions will depend on the language chosen.

DATE () hasthe optionsMonth, Weekday and Norma 1, which produce the name of the day
or month in text. Depending on how your implementation handles national character sets, the
result from these functions might use the correct spelling of the currently chosen language.

DELWORD (), SUBWORD (), WORD (), WORDINDEX (), WORDLENGTH (), WORDPOS () and
WORDS () requires the concept of a"word", which is defined as a non-blank characters
separated by blanks. However, the interpretation of what is ablank character depends upon the
implementation.

ERRORTEXT () might have slightly different wordings, depending on the implementation, but
the meaning and numbering should be the same. However, note that some implementations may
have additional error messages, and some might not follow the standard numbering. Error
messages may al so be returned in the user's native language.

QUEUED () refersto the system specific concept of a"stack”, which is either internal or

external to the implementation. The result of this function may therefore be dependent on how
the stack isimplemented on your system.

65

¢ RANDOM () will differ from machine to machine, since the algorithm isimplementation
dependent. If you set the seed, you can safely assume that the same interpreter under the same
operating system and on the same hardware platform will return a reproducible sequence. But if
you change to another interpreter, another machine or even just another version of the operating
system, the same seed might not give the same pseudo-random sequence.

¢ SOURCELINE () hasbeen changed between REXX language level 3.50 and 4.00. In 4.00 it can
return 0 if the REXX implementation finds it necessary, and any request for a particular line
may get a nullstring as result. Before assuming that this function will return anything useful,
consult the documentation.

¢ TIME () will differ somewhat on different machines, sinceit is dependent on the underlying
operating system to produce the timing information. In particular, the granularity and accuracy
of thisinformation may vary.

¢ VALUE () will be dependent on implementation and operating system if it is called with its third
parameter specified. Consult the implementation specific documentation for more information
about how each implementation handles this situation.

¢ XRANGE () will return astring, which contents will be dependent on the character set used by
your computer. You can safely make very few assumptions about the visual representation, the
length, or the character order of the string returned by this function.

The built-in functions maked as AREXX are available by default on Amiga and AROS systems, but
the AREXX_BIFS OPTION isrequired on other system to make these functions available.

Asyou can see, even REXX interpreters that are within the standard can differ quite alot in the
built-in functions. Although the points listed above seldom are any problem, you should never
assume anything about them before you have read the implementation specific documentation.
Failure to do so will give you surprises sooner or later.

And, by the way, many implementations (probably the majority) do not follow the standard
completely. So, in fact, you should never assume anything at all. Sorry ...

4.1.6 Blanks vs. Spaces

Note that the description differs between "blanks" and the <space> character. A blank is any
character that might be used as "whitespace" to separate text into groups of characters. The <space>
character is only one of several possible blanks. When thistext says "blank” it means any one from
a set of characters that are used to separate visual charactersinto words. When this text says
<gpace>, it means one particular blank, that which is generally bound to the space bar on a normal
computer keyboard.

All implementation can be trusted to treat the <space> character as blank. Additional characters
that might be interpreted as blanks are <tab> (horizontal tabulator), <ff> (formfeed), <vt> (vertical
tabulator), <nl> (newline) and <cr> (carriage return). The interpretation of what is blank will vary
between machines, operating systems and interpreters. If you are using support for national
character sets, it will even depend on the language selected. So be sure to check the documentation
before you assume anything about blank characters.

66

Some implementations use only one blank character, and perceives the set of blank characters as
equivalent to the <space> character. This will depend on the implementation, the character set, the
customs of the operating system and various other reasons.

4.2 Regina Built-in Functions

Below follows an in depth description of all the functionsin the library of built-in functions. Note
that all functionsin this section are available on al ports of Regina. Each function is designated as
being part of the ANSI standard, or from other implementations. Following sections describe those
built-in functions that are available on specific ports of Regina, or when Reginais built with certain
switches.

ABBREV (long, short [,length]) - (ANSI)

Returns 1 if the string short is strictly equal to the initial first part of the string long, and returns 0
otherwise. The minimum length which short must have, can be specified as length. If lengthis
unspecified, no minimum restrictions for the length of short applies, and thus the nullstring is an
abbreviation of any string.

Note that this function is case sensitive, and that leading and trailing spaces are not stripped of f
before the two strings are compared.

ABBREV ('Foobar', "Foo') 1
ABBREV ('Foobar', 'Foo', 4) 0 /*Too short */
ABBREV ('Foobar', 'foo") 0 /*Different case */

ABS (number) - (ANSI)

Returns the absolute value of the number, which can be any valid REXX number. Note that the
result will be normalized according to the current setting of NUMERIC.

ABS (-42) 42
ABS (100) 100

ADDRESS ([option]) - (ANSI)

Returns the current default environment to which commands are sent or optionally specific details
about the targets of command input/output and errors. The valueis set with the ADDRESS clause,
for more information, see documentation on that clause.

If option is not specified the default optionis“N”.
Option can be:

[N]
(Normal) Returns the current default environment.

67

[I]

(Input) Returns the target details for input as three words: position type resource.
[O]

(Output) Returns the target details for output as three words: position type resource.
[E]

(Error) Returns the target details for errors as three words: position type resource.

position will be one of: INPUT (for option “1”), APPEND or REPLACE
type will be one of: STEM, STREAM, FIFO, LIFO, NORMAL
resource will be the name of the stem, stream or queue or blank

ADDRESS () SYSTEM /* Maybe */
ADDRESS ('N"') SYSTEM /* Maybe */
Defaults:

ADDRESS ('I") INPUT NORMAL
ADDRESS ('O") REPLACE NORMAL
ADDRESS ('E") REPLACE NORMAL

After: ADDRESS SYSTEM WITH INPUT FIFO 'MYQUEUE' OUTPUT STEM
mystem. ERROR APPEND STREAM 'my.err'

ADDRESS ('I") INPUT FIFO MYQUEUE
ADDRESS ('O") REPLACE STEM MYSTEM.
ADDRESS ('E") APPEND STREAM my.err

ARG ([argno [,option]]) - (ANSI)

Returns information about the arguments of the current procedure level. For subroutines and
functionsit will refer to the arguments with which they were called. For the "main" program it will
refer to the arguments used when the REXX interpreter was called.

Note that under some operating systems, REXX scripts are run by starting the REXX interpreter as
aprogram, giving it the name of the script to be executed as parameter. Then the REXX interpreter
might process the command line and "eat" some or al of the arguments and options. Therefore, the
result of thisfunction at the main level isimplementation dependent. The parts of the command
line which are not available to the REXX script might for instance be the options and arguments
meaningful only to the interpreter itself.

Also note that how the interpreter on the main level divides the parameter line into individual
arguments, isimplementation dependent. The standard seems to define that the main procedure
level can only get one parameter string, but don't count on it. On all platforms, Regina will receive
one parameter string at the main procedural level, unless Regina is started with the -a switch, when
multiple parameter strings are passed in.

For more information on how the interpreter processes arguments when called from the operating
system, see the documentation on how to run a REXX script.

When called without any parameters, ARG () will return the number of comma-delimited

68

arguments. Unspecified (omitted) arguments at the end of the call are not counted. Note the
difference between using comma and using space to separate strings. Only comma-separated
arguments will be interpreted by REXX as different arguments. Space-separated strings are
interpreted as different parts of the same argument.

Argno must be a positive whole number. If only argno is specified, the argument specified will be
returned. The first argument is numbered 1. If argno refers to an unspecified argument (either
omitted or argno is greater than the number of arguments), a nullstring is returned.

If option is also specified, the return value will be 1 or 0, depending on the value of option and on
whether the numbered parameter was specified or not. Option can be:

o

! (Omitted) Returns 1 if the numbered argument was omitted or unspecified. Otherwise, 0 is
returned.

[E]
(Existing) Returns 1 if the numbered argument was specified, and 0 otherwise.

If called as:
CALL FUNCTION 'This' 'is', 'a',, 'test',,

ARG () 4 /*Last parameter omitted */

ARG (1) 'This is'

ARG (2) 'a'

ARG (3) v

ARG (9) ''" /*Ninth parameter doesn't exist*/

ARG (2,'E") 1

ARG (2,'0") 0

ARG(3,'E") 0 /*Third parameter omitted */

ARG (9,'0") 1

B2C (binstring) - (AREXX)

Converts a string of binary digits(0,1)into the corresponding(packed)character representation. The
conversion is the same as though the argument string had been specified as aliteral binary
string(e.g. '1010'B). Blanks are permitted in the string,but only at byte boundaries. Thisfunction is
particularly useful for creating strings that are to be used as bit masks.

B2C ('00110011") '3
B2C('01100001") 'A!

69

B2X (binstring) - (ANSI)

Takes a parameter which isinterpreted as a binary string, and returns a hexadecimal string which
represent the same information. Binstring can only contain the binary digits 0 and 1. To increase
readability, blanks may be included in binstring to group the digits into groups. Each such group
must have a multiple of four binary digits, except from the first group. If the number of binary digits
in the first group is not a multiple of four, that group is padded at the left with up to three leading
zeros, to make it amultiple of four. Blanks can only occur between binary digits, not as leading or
trailing characters.

Each group of four binary digitsistrandated into on hexadecimal digit in the output string. There
will be no extra blanksin the result, and the upper six hexadecimal digits are in upper case.

B2X ('0010 01011100 0011") '26C3"
B2X('10 0101 11111111") '26FF"
B2X ('0100100 0011") '243"

BEEP (frequency [,duration]) - (0S/2)

Sounds the machine's bell. The frequency and duration (in milliseconds) of the tone are specified. If
no duration value is specified, it defaultsto 1. Not all operating systems can sound their bells with
the given specifications.

BEEP (50,1000)

BITAND (stringl [, [string2] [,padchar]]) - (ANSI)

Returns the result from bytewise applying the operator AND to the charactersin the two strings
stringl and string2. Note that thisis not the logical AND operation, but the bitwise AND operation.
Sring2 defaults to a nullstring. The two strings are left-justified; the first characters in both strings
will be AND'ed, then the second characters and so forth.

The behavior of this function when the two strings do not have equal length is defined by the
padchar character. If it is undefined, the remaining part of the longer string is appended to the result
after all charactersin the shorter string have been processed. If padchar is defined, each char in the
remaining part of the longer string islogically AND'ed with the padchar (or rather, the shorter
string is padded on the right length, using padchar).

When using this function on character strings, e.g. to uppercase or lowercase a string, the result will
be dependent on the character set used. To lowercase astring in EBCDIC, use BITAND () witha
padchar valueof 'bf ' x. Todo the samein ASCII, use BITOR () with apadchar value of ' 20 ' x.

\ BITAND ('123456'x, '3456'x) \ 1101456 "'x \
BITAND ('foobar',, 'df'x) '"FOOBAR' /*For ASCII*/
BITAND ('123456'x, '3456'x, ' £0'x) 1101450 "'x

70

BITCHG (string, bit) - (AREXX)

Changes the state of the specified bit in the argument string. Bit numbers are defined such that bit O
isthe low-order bit of the rightmost byte of the string.

\ BITCHG ('0313'x, 4) 10303 'x

BITCLR (string, bit) - (AREXX)

Clears (sets to zero) the specified bit in the argument string. Bit numbers are defined such that bit O
isthe low-order bit of the rightmost byte of the string.

\ BITCLR('0313'x, 4) 10303 "x
BITCOMP (stringl, string2, bit [,pad]) - (AREXX)

Compares the argument strings bit-by-bit,starting at bit number 0. The returned value is the bit
number of the first bit in which the strings differ,or -1 if the strings are identical.

BITCOMP ('7F'x, 'FF'x) '
BITCOMP ('FF'x, 'FF'x) H=1"

BITOR(stringl [, [string2] [,padchar]]) - (ANSI)

Returns the result from bytewise applying the operator OR to the characters in the two strings
stringl and string2. Note that thisis not the logical OR operation, but the bitwise OR operation.
Sring2 defaults to a nullstring. The two strings are left-justified; the first characters in both strings
will be OR'ed, then the second characters and so forth.

The behavior of this function when the two strings do not have equal length is defined by the
padchar character. If it is undefined, the remaining part of the longer string is appended to the result
after all charactersin the shorter string have been processed. If padchar is defined, each char in the
remaining part of the longer string islogically OR'ed with the padchar (or rather, the shorter string
is padded on the right length, using padchar).

When using this function on character strings, e.g. to uppercase or lowercase a string, the result will
be dependent on the character set used.

BITOR ('12x) '12'x
BITOR('15'x, '24'x) '35'x

BITOR('15'x, '2456'x) '3556'x
BITOR('15'x, '2456'x, 'FO'x) '35F6'x
BITOR('1111'x,, '4D'x) '5D5D'x

BITOR ('pQrsS',, '20'x) 'pgrs' /* ASCII */

71

BITSET (string, bit) - (AREXX)

Sets the specified bit in the argument string to 1. Bit numbers are defined such that bit O is the low-

order bit of the rightmost byte of the string.

BITSET ('0313'x,2) '0317'x

BITTST (string, bit) - (AREXX)

The boolean return indicates the state of the specified bit in the argument string.
Bit numbers are defined such that bit O is the low-order bit of the rightmost byte to the string.

BITTST ('0313'x,4) 1
BITXOR(stringl[, [string2] [,padchar]]) - (ANSI)

Workslike BITAND (), except that the logical function XOR (exclusive OR) is used instead of
AND. For more information see BITAND () .

BITXOR ('123456'x, '3456"'x) '266256"'x
BITXOR ('FooBar',, '20"'x) 'fOObAR' /*For ASCII */
BITXOR ('123456'x, '3456'x, 'f0'x) '2662A6"'x

BUFTYPE () - (CMS)

This function is used for displaying the contents of the stack. It will display both the string and

notify where the buffers are displayed. It is meant for debugging, especially interactive, when you
need to obtain information about the contents of the stack. It always returns the nullstring, and takes

NO parameters.

Hereis an example of the output from calling BUFTYPE (note that the second and fourth buffers are

empty):

==> Lines: 4

==> Buffer: 3

"fourth line pushed, in third buffer"
==> Buffer: 2

==> Buffer: 1

"third line pushed, in first buffer"

==> Buffer: O

"second line pushed, in 'zeroth' buffer"
"first line pushed, in 'zeroth' buffer"
==> End of Stack

C2B(string) - (AREXX)

Converts the supplied string into the equivalent string of binary digits.

72

C2B('abc') '011000010110001001100011"
C2D(string [,length]) - (ANSI)

Returns a whole number, which is the decimal representation of the packed string string, interpreted
as abinary number. If length (which must be a non-negative whole number) is specified, it denotes
the number of charactersin string to be converted, and string isinterpreted as a two's complement
representation of a binary number, consisting of the length rightmost charactersin string. If length
is not specified, string is interpreted as an unsigned number.

If length islarger than the length of string, string is sign-extended on the left. i.e. if the most
significant bit of the leftmost char of string is set, string is padded with ' £ £ ' x chars at the | eft
side. If the bitisnot set, ' 00 ' x charsare used for padding.

If length istoo short, only the length rightmost charactersin string are considered. Note that this
will not only in general change the value of the number, but it might even change the sign.

Note that this function is very dependent on the character set that your computer is using.

If it isnot possible to express the final result as awhole number under the current settings of
NUMERIC DIGITS, anerror isreported. The number to be returned will not be stored in the
internal representation of the built-in library, so size restrictions on whole numbers that generally
applies for built-in functions, do not apply in this case.

C2D('foo') '6713199' /*For ASCII machines */
C2D('103'x) '259"

C2D('103'x,1) '3

C2D('103'x,2) '259"!

C2D('0103'x, 3) '259!

C2D('ffff'x,2) T=1"

C2D('ffff'x) '65535"

C2D('ffff'x, 3) '65535"

C2D('fff9'x,2) '-6'

C2D('ff80'x,2) '-128"

C2X (string) - (ANSI)

Returns a string of hexadecimal digits that represents the character string string. Converting is done
bytewise, the six highest hexadecimal digits are in uppercase, and there are no blank charactersin
the result Leading zeros are not stripped off in the result. Note that the behavior of thisfunctionis
dependent on the character set that your computer is running (e.g. ASCII or EBCDIC).

73

C2X ('"ffff'x) 'FEEFE
C2X ('Abc') '416263" /*For ASCII Machines */
C2X ('1234"'x) '1234"
C2X('011 0011 1101'b) '033D"

CD (directory) - (REGINA)

CHDIR (directory) - (REGINA)

Changes the current process's directory to the directory specified. A more portable, though non-
standard alternative isto use the DIRECTORY BIF.

CHDIR('/tmp/aa') /* new directory now /tmp/aa */

CENTER (string, length [, padchar]) - (ANSI)

CENTRE (string, length [, padchar]) - (ANSI)

This function has two names, to support both American and British spelling. It will center string in
astring total of length length characters. If length (which must be a non-negative whole number) is
greater than the length of string, string is padded with padchar or <space> if padchar is
unspecified. If length is smaller than the length of string character will be removed.

If possible, both ends of string receives (or loses) the same number of characters. If an odd number
of characters are to be added (or removed), one character more is added to (or removed from) the
right end than the left end of string.

CENTER ('Foobar',10) ' Foobar
CENTER ('Foobar',11) ! Foobar !
CENTRE ('Foobar', 3) 'oob'
CENTER ('Foobar', 4) 'ooba'
CENTER ('Foobar',10,'"'*") '**Foobar**"

CHANGESTR (needle, haystack, newneedle) - (ANSI)

The purpose of this function isto replace all occurrences of needle in the string haystack with
newneedle. The function returns the changed string.

If haystack does not contain needle, then the original haystack is returned.

74

CHANGESTR ('a', "fred', 'c'") 'fred'
CHANGESTR('','', 'x") 1
CHANGESTR ('a', 'abcdef', 'x") 'xbcdef!
CHANGESTR('0','0", "'1") 1
CHANGESTR ('a', 'def', 'xyz"') 'def!
CHANGESTR ('a','','x") vy
CHANGESTR ("', 'def', "xyz") 'def'
CHANGESTR ('abc', 'abcdef', "xyz') 'xyzdef'
CHANGESTR ('abcdefg', 'abcdef', "xyz') 'abcdef'
CHANGESTR ('abc', "abcdefabccdabed!', 'z 'zdefzcdzd'
)

CHARIN ([streamid] [,[start] [,length]]) - (ANSI)

This function will in general read characters from a stream, and return a string containing the
characters read. The streamid parameter names a particular stream to read from. If it is unspecified,
the default input stream is used.

The start parameter specifies a character in the stream, on which to start reading. Before anything is
read, the current read position is set to that character, and it will be the first character read. If start is
unspecified, no repositioning will be done. Independent of any conventions of the operating
system, the first character in a stream is always numbered 1. Note that transient streams do not
allow repositioning, and an error isreported if the start parameter is specified for atransient stream.

The length parameter specifies the number of charactersto read. If the reading did work, the return
string will be of length length. There are no other ways to know many characters were read other
than checking the length of the return value. After the read, the current read position is moved
forward as many characters as was read. If length is unspecified, it defaultsto 1. If lengthis 0,
nothing is read, but the file might still be repositioned if start was specified.

Note that this function reads the stream raw. Some operating systems use special characters to
differentiate between separate linesin text files. On these systems these special characters will be
returned aswell. Therefore, never assume that this function will behave identically for text streams
on different systems.

What happens when an error occurs or the End-Of-File (EOF) is seen during reading, is
implementation dependent. The implementation may choose to set the NOTREADY condition (does
not exist in REXX language level 3.50). For more information, see chapter on Stream I nput and
Output.

(Assuming that thefile"/tmp/file" containsthefirstline "This is the first line"):

75

CHARIN () 'F' /*Maybe*/
CHARIN(,, 6) 'Foobar' /*Maybe*/
CHARIN ('/tmp/file',, 6) '"This i
CHARIN('/tmp/file',4,06) 's 1is t'

CHAROUT ([streamid] [,[string] [,start]]) - (ANSI)

In general this function will write string to astreamid. If streamid is not specified the default output
stream will be used.

If start is specified, the current write position will be set to the startth character in streamid, before
any writing is done. Note that the current write position ca not be set for transient streams, and
attempts to do so will report an error. Independent of any conventions that the operating system
might have, the first character in the stream isnumbered 1. If start is not specified, the current write
position will not be changed before writing.

If string is omitted, nothing is written, and the effect is to set the current write position if start is
specified. If neither string nor start is specified, the implementation can really do whatever it likes,
and many implementations use this operation to close the file, or flush any changes. Check
implementation specific documentation for more information.

The return value is the number of charactersin string that was not successfully written, so 0 denotes
a successful write. Note that in many REXX implementations there is no need to open a stream,; it
will beimplicitly opened when it isfirst used in aread or write operation.

(Assuming thefilereferred to by outdata wasempty, it will contain the string FoobWow
afterwards. Note that there might will not be an End-Of-Line marker after this string, it depends on
the implementation.)

CHAROUT (, 'Foobar') '0"
CHAROUT (outdata, 'Foobar') '0"
CHAROUT (outdata, "Wow', 5) 'O

CHARS ([streamid]) - (ANSI)

Returns the number of characterseft in the named streamid, or the default input stream if streamid
is unspecified. For transient streams thiswill always be either 1 if more characters are available, or
0 if the End-Of-File condition has been met. For persistent streams the number of remaining bytes
in the file will be possible to calculate and the true number of remaining bytes will be returned.

However, on some systems, it is difficult to calculate the number of characters|eft in a persistent
stream; the requirementsto CHARS () hastherefore been relaxed, so it can return 1 instead of any
number other than 0. If it returns 1, you can therefore not assume anything more than that there is at
least one more character left in the input stream.

76

CHARS () '1' /* more data on def. input stream */
CHARS () '0' /* EOF for def. input stream */
CHARS ('outdata') '94' /* maybe */

CLOSE (file) - (AREXX)

Closes the file specified by the given logical name. The returned value is a boolean success flag, and
will be 1 unless the specified file was not open.

CLOSE ('input") "1
COMPARE (stringl, string2 [,padchar]) - (ANSI)
This function will compare stringl to string2, and return awhole number which will be O if they are
equal, otherwise the position of the first character at which the two strings differ is returned. The
comparison is case-sensitive, and leading and trailing space do matter.
If the strings are of unequal length, the shorter string will be padded at the right hand end with the

padchar character to the length of the longer string before the comparison. If a padchar is not
specified, <space> is used.

COMPARE ('FooBar', 'Foobar') 4"
COMPARE ('Foobar', 'Foobar') 0!
COMPARE ('Foobarrr', "Fooba') 'o!
COMPARE ('Foobarrr', 'Fooba', 'r') 'O

COMPRESS (string [,list]) - (AREXX)

If the list argument is omitted,the function removes leading,trailing,or embedded blank characters
from the string argument. If the optional list is supplied, it specifies the characters to be removed
from the string.

COMPRESS (' why not ") 'whynot'
COMPRESS ('"++12-34—-+", "+=-") '1234"

CONDITION ([option]) - (ANST)

Returns information about the current trapped condition. A condition becomes the current trapped
condition when a condition handler is called (by CALL or STGNAL) to handle the condition. The
parameter option specifies what sort of information to return:

[C]
(Condition) The name of the current trapped condition is return, thiswill be one of the
condition named legal to STGNAL ON, like SYNTAX, HALT, NOVALUE, NOTREADY,
ERROR Or FATILURE.

77

[D]
(Description) A text describing the reason for the condition. What to put into this variableis
implementation and system dependent.

[E]
(Extra) The error code (a single number) and a sub-error code if available (two numbers and
a period; eg 40.5) that was generated by the condition.

[I]
(Instruction) Returns either CALL or STIGNAL, depending on which method was current
when the condition was trapped.

[S]
(State) The current state of the current trapped condition. This can be one of ON, OFF or
DELAY. Note that this option reflect the current state, which may change, not the state at the
time when the condition was trapped.

For more information on conditions, consult the chapter Conditions. Note that condition may in
severa ways be dependent on the implementation and system, so read system and implementation
dependent information too.

COPIES (string, copies) - (ANSI)

Returns a string with copies concatenated copies of string. Copies must be a non-negative whole
number. No extra space is added between the copies.

COPIES ('Foo', 3) 'FooFooFoo'
COPIES('*') Vhkhkkhkhkhkkhkkhkkhkkhkhkkhkhkhkhkhx !
COPIES ('Bar ',2)'Bar Bar '

COPIES('',10000) U

COUNTSTR (needle, haystack) - (ANSI)

Returns a count of the number of occurrences of needle in haystack that do not overlap.

COUNTSTR ("', '"") 0
COUNTSTR ('a', 'abcdef'") 1
COUNTSTR (0, 0) 1
COUNTSTR ('a', 'def') 0
COUNTSTR('a','"') 0
COUNTSTR ("', 'def"') 0
COUNTSTR ('abc', "abcdef") 1
COUNTSTR ('abcdefg', "abcdef' 0
COUNTSTR ('abc', 'abcdefabccdabed') 3

CRYPT (string, salt) - (REGINA)

Encrypts the given string using the supplied salt and returns the encrypted string. Only the first two

78

characters of salt are used. Not all operating systems support encryption, and on these platforms, the
string is returned unchanged. It is aso important to note that the encrypted string is not portable
between platforms.

CRYPT ('a string', 'lx"'") '"1xYwWPPWI1zRJs' /* maybe */

DATATYPE (string [,option]) - (ANSI)

With only one parameter, this function identifies the "datatype” of string. The value returned will be
"NUM" if string isavalid REXX number. Otherwise, "CHAR" isreturned. Note that the
interpretation of whether string is a valid number will depend on the current setting of NUMERIC.

If option is specified too, it will check if string is of a particular datatype, and return either "1" or
"0" depending on whether string isor is not, respectively, of the specified datatype. The possible
values of option are:

[A]
(Alphanumeric) Consisting of only alphabetic characters (in upper, lower or mixed case) and
decimal digits.

[B]
(Binary) Consisting of only the two binary digits 0 and 1. Note that blanks are not allowed
within string, as would have allowed been within a binary string.

[L]
(Lower) Consisting of only alphabetic charactersin lower case.

[M]
(Mixed) Consisting of only alphabetic characters, but the case does not matter (i.e. upper,
lower or mixed.)

[N]
(Numeric) If string isavalid REXX number, i.e. DATATYPE (string) would return NUM.

[S]
(Symbolic) Consists of charactersthat are legal in REXX symbols. Note that this test will
pass several strings that are not legal symbols. The characters includes plus, minus and the
decimal point.

[U]
(Upper) Consists of only upper case aphabetic characters.

[W]
(Whole) If string isavalid REXX whole number under the current setting of NUMERIC.
Note that 13. 0 isawhole number since the decimal part is zero, while 13E+1 isnot a
whole number, since it must be interpreted as 130 plus/minus 5.

[X]
(Hexadecimal) Consists of only hexadecimal digits, i.e. the decimal digits 0-9 and the
alphabetic characters A-F in either case (or mixed.) Note that blanks are not allowed within
string, as it would have been within a hexadecimal string.

If you want to check whether a string is suitable as a variable name, you should consider using the
SYMBOL () function instead, since the Symbo1ic option only verifies which characters string
contains, not the order. You should also take care to watch out for lower case alphabetic characters,
which are allowed in the tail of acompound symbol, but not in asimple or stem symbol or in the
head of compound symbol.

79

Also note that the behavior of the options2, 7, M and U might depend on the setting of language, if
you are using an interpreter that supports national character sets.

DATATYPE (' - 1.35E-5 ") "NUM'
DATATYPE ('1E999999999") 'CHAR'
DATATYPE ('1E9999999999") 'CHAR'
DATATYPE (' ' Q#&#S (&*%™ ") '"CHAR'
DATATYPE ('FooBar', 'A"') "1’
DATATYPE ('Foo Bar','A') 'O
DATATYPE ('010010111101"','B") 1
DATATYPE ('0100 1011 1101','B"'") 'O
DATATYPE (' foobar', 'L") 17
DATATYPE ('FooBar', 'M') "1’
DATATYPE (' -34E3 ','N'") '
DATATYPE ('A SYMBOL!?!','S") '
DATATYPE ('1.23.39E+4.5"','S") "1’
DATATYPE ('Foo bar','S'") "0’
DATATYPE ('FOOBAR', 'U"') "1’
DATATYPE ('123deadbeef', 'X") "1’

DATE ([option_out [,date [,option_in]]]) - (ANSI)

This function returns information relating to the current local date. If the option_out character is
specified, it will set the format of the return string. The default value for option_out is"N".

Possible options are:

[B]

[C]

[D]

[E]

[I]

(Base) The number of complete days from January 1% 0001 until yesterday inclusive, asa
whole number. This function uses the Gregorian calendar extended backwards. Therefore
Date('B") // 7 will equal the day of the week where O corresponds to Monday and 6 Sunday.
(ANSI)

(Century) The number of daysin this century from January 1% -00 until today, inclusive.
The return value will be a positive integer. (Regina Extension)

(Days) The number of daysin thisyear from January 1% until today, inclusive. The return
value will be apositive integer. (ANSI)

(European) The date in European format, i.e. "dd/mm/yy". If any of the numbersissingle
digit, it will have aleading zero. (ANSI)

(1SO) Returns the date according the format specified by International Standards

80

[M]

[N]

[O]

[S]

[U]

[W]

[T]

Organization Standard 1SO 8601:2004. The format will be"yyyy-mm-dd", and each part is
padded with leading zero where appropriate. (Regina Extension)

(Month) The unabbreviated name of the current month, in English. (ANSI)

(Normal) Return the date with the name of the month abbreviated to three letters, with only
thefirst letter in upper case. The format will be"dd Mmm yyyy", where Mmm is the month
abbreviation (in English) and dd isthe day of the month, without leading zeros. (ANSI)

(Ordered) Returns the date in the ordered format, which is"yy/mm/dd". (ANSI)

(Standard/Sorted) Returns the date according the format specified by International Standards
Organization Standard 1SO 2014-1976 (E). The format will be"yyyymmdd", and each part
is padded with leading zero where appropriate. (ANSI)

(USA) Returns the date in the format that is normally used in USA, i.e. "mm/dd/yy", and
each part is padded with leading zero where appropriate. (ANSI)

(Weekday) Returns the English unabbreviated name of the current weekday for today. The
first letter of the result isin upper case, therest isin lower case. (ANSI)

(time_t) Returns the current date/timein UNIX time_t format. time_t isthe number of
seconds since January 1% 1970. (Regina Extension)

Note that the "C" option is present in REXX language level 3.50, but was removed in level 4.00.
The new "B" option should be used instead. When porting code that use the "C" option to an
interpreter that only have the"B" option, you will can use the conversion that January 1% 1900 is
day 693595 in the Gregorian calendar.

Note that none of the formatsin which DATE () returnsits result are affected by the settings of
NUMERIC. Also note that if thereis more than one call to DATE () (or TIME ()) in asingle clause
of REXX code, al of them will use the same basis data for calculating the date (or time).

If the REXX interpreter contains national support, some of these options may return different output
for the names of months and weekdays.

81

Assuming that today is January 6" 1992:

DATE ('B"'") '727203"
DATE ('C"') '33609"
DATE('D") '6!

DATE ('E") '06/01/92"
DATE ('M") 'January'
DATE ('N") '6 Jan 1992"
DATE ('O"') '92/01/06"
DATE ('S"') '19920106"
DATE ('U"') '01/06/92"
DATE ('W'") 'Monday'
DATE ('T"') 694620000
DATE ('T"') '1992-01-06"

If the date option is specified, the function provides for date conversions. The optional option_in
specifies the format in which date is supplied. The possible values for option_in are:
BDEOUNST.

The default value for option_inisN.

When adate is converted to format T, the returned value is the input date with atime of 00:00:00.

DATE('O','13 Feb 1923") '23/02/13"
DATE ('O','06/01/50','U") '50/06/01"

If the date supplied does not include a century in its format, then the result is chosen to make the
year within 50 years past or 49 years future of the current year.

The date conversion capability of the DATE BIF was introduced with the ANSI standard.

DELSTR(string, start [,length]) - (ANSI)

Returns string, after the substring of length length starting at position start has been removed. The
default value for length is the rest of the string. Start must be a positive whole number, while length
must be a non-negative whole number. It isnot an error if start or length (or a combination of
them) refers to more characters than string holds

DELSTR ('Foobar', 3) 'Foo'
DELSTR ('Foobar', 3, 2) 'Foor'
DELSTR ('Foobar', 3, 4) 'Foo'
DELSTR ('Foobar', 7) 'Foobar'

82

DELWORD (string,start[,length]) (ANSI)

Removes length words and all blanks between them, from string, starting at word number start. The
default value for length is the rest of the string. All consecutive spaces immediately after the last
deleted word, but no spaces before the first deleted word is removed. Nothing is removed if length
IS zero.

The valid range of start is the positive whole numbers; the first word in string isnumbered 1. The
valid range of length is the non-negative integers. It is not an error if start or length (or a
combination of them) refers to more words than string holds.

DELWORD ('This is a test', 3) 'This is '

DELWORD ('This is a test',2,1) 'This a test'

DELWORD ('This is a test',2,5) '"This'

DELWORD ('This is a test',1,3) 'test' /*No leading space*/

DESBUF () - (CMS)

This function removes all buffers on the stack, it isreally just away of clearing the whole stack for
buffers aswell asstrings. Functionally, it is equivalent to executing DROPBUF with a parameter of
0. (Actually, thisisalie, since DROPBUF is not able to take zero as a parameter. Rather, itis
equivalent to executing DROPBUF with 1 as parameter and then executing DROPBUF without a
parameter, but thisis a subtle point.) It will return the number of buffers left on the stack after the
function has been executed. This should be 0 in al cases.

DESBUF () 0
DIGITS() - (ANSI)

Returns the current precision of arithmetic operations. Thisvalue is set using the NUMERIC
statement. For more information, refer to the documentation on NUMERIC.

DIGITS () '9' /* Maybe */
DIRECTORY ([new directory]) - (0S/2)

Returns the current directory for the running process, and optionally changes directory to the
specified new directory. If the new directory exists, and the change to new directory succeeds, the
new directory isreturned. If the new directory does not exist or an error occurred changing to that
new directory, the empty string is returned.

DIRECTORY () '/tmp' /* Maybe */
DIRECTORY ('c:\temp') 'c:\temp' /* Maybe */

83

D2C (integer [,length]) - (ANSI)

Returns a (packed) string, that is the character representation of integer, which must be awhole
number, and is governed by the settings of NUMERIC, not of the internal precision of the built-in
functions. If length is specified the string returned will be length bytes long, with sign extension. If
length (which must be a non-negative whole number) is not large enough to hold the result, an error
isreported.

If length is not specified, integer will be interpreted as an unsigned number, and the result will have
no leading <nul> characters. If integer is negative, it will be interpreted as a two's complement, and
length must be specified.

D2C (0) '

D2C (127) "TF'x

D2C (128) '80"'x

D2C (128, 3) '000080"'x
D2C (-128) Error 40.13
D2C (=10, 3) "fffff5'x

D2X (integer [,length]) - (ANSI)

Returns a hexadecimal number that is the hexadecimal representation of integer. Integer must be a
whole number under the current settings of NUMERTIC, it is not effected by the precision of the
built-in functions.

If length is not specified, then integer must be non-negative, and the result will be stripped of any
leading zeros.

If length is specified, then the resulting string will have that length. If necessary, it will be sign-
extended on the left side to make it the right length. If length is not large enough to hold integer, an
error is reported.

D2X (0) '0"

D2X (127) Aok

D2X (128) '80"

D2X (128,5) '00080"'x
D2X (-128) Error 40.13
D2X (-10,5) "ffff5'x

DROPBUF ([number]) - (CMS)

This function will remove zero or more buffers from the stack. Called without a parameter, it will
remove the topmost buffer from the stack, provided that there were at |east one buffer in the stack.
If there were no buffersin the stack, it will remove all strings in the stack, i.e. remove the zeroth
buffer.

If the parameter number was specified, and the stack contains a buffer with an assigned number
equal to number, then that buffer itself, and all strings and buffers above it on the stack will be
removed; but no strings or buffers below the numbered buffer will be touched. If number refersto a
buffer that does not exist in the stack; no strings or buffersin the stack is touched.

As an extra extension, in Regina the DROPRUF () built-in function can be given anon-positive
integer as parameter. If the name is negative then it will convert that number to its absolute value,
and remove that many buffers, counted from the top. Thisis functionally equivalent to repeating
DROPBUF () without parameters for so many times as the absolute value of the negative number
specifies. Note that using -0 as parameter is equivalent to removing all strings and buffersin the
stack, since -0 isequivaent to normal 0. The number is converted during evaluation of parameters
prior to the call to the DROPBUF () routine, so the sing islost.

The value returned from this function is the number of buffers|eft on the stack after the buffersto
be deleted have been removed. Obviously, thiswill be a non-negative integer. Thistoo, deviates
from the behavior of the DROPBUF command under CM S, where zero is aways returned.

DROPBUF (3) 2 /* remove buffer 3 and 4 */
DROPBUF (4) 0O /* no buffers on the stack */
DROPBUF () 4 /* if there where 5 buffers */

EOF (file) - (AREXX)

Checks the specified logical file name and returns the boolean value 1(True) if the end-of-file has
been reached, and O(False)otherwise.

EOF ('infile") '1" /* maybe */
ERRORTEXT (errno [, lang]) - (ANSI)

Returns the REXX error message associated with error number errno. If the lang character is
specified, it will determine the native language in which the error message is returned. The default
valuefor lang is"N".

Possible options are:

[N]

(Normal) The error text is returned in the default native language.
[s]

(Standard English) The error text is returned in English.

For more information on how Regina supports different native languages, see Native L anguage
Support.
If the error message is not defined, a nullstring is returned.

The error messages in REXX might be slightly different between the various implementations. The
standard says that errno must be in the range 0-99, but in some implementations it might be within

85

alessrestricted range which gives room for system specific messages. You should in general not
assume that the wordings and ordering of the error messages are constant between implementations
and systems.

ERRORTEXT (20) 'Symbol expected’
ERRORTEXT (30) 'Name or string too long'
ERRORTEXT (40) 'Incorrect call to routine'

errno can aso be specified as an errno followed by a sub error number, with a period between. The
resulting string will be the text of the sub-error number with placemarkers indicating where
substitution values would normally be placed.

ERRORTEXT (40.24) <bif> argument 1 must be a binary string;
found "<value>"

Regina al so supports messages in several native languages. See the section on Native L anguage
Support for details on how thisis configured. With DE as the native language in effect:

ERRORTEXT (40.24) Routine <bif>, Argument 1 mubl eine
Binadtzeichenkette sein; "<value>"

ERRORTEXT (40.24,'S" <bif> argument 1 must be a binary string;
) found "<value>"

EXISTS (filename) - (AREXX)

Tests whether the specified name of the given filename exists. The filename string may include any
portion of afull file path specification. Note that the argument isnot alogical file name used in
other ARexx file functions. A more portable equivalent of thisisto use the ' QUERY EXISTS
command of the STREAM BIF.

EXISTS ('c:\temp\infile.txt") '1" /* maybe */
EXPORT (address, [string], [length] [,pad]) - (AREXX)

Copies data from the (optional) string into a previously-allocated memory area, which must be
specified as a 4-byte address. The length parameter specifies the maximum number of characters to
be copied; the default isthe length of the string. If the specified length is longer than the string, the
remaining areais filled with the pad character or nulls('00'x). The returned value is the number

of characters copied.

Caution isadvised in using this function. Any area of memory can be overwritten,possibly
causing a system crash.

See a'so STORAGE() and IMPORT().

Note that the address specified is subject to a machine's endianess.

EXPORT ('0004 0000'x, 'The answer') '10"

86

FILESPEC (option, filespec) - (0S/2)

Returns the specified portion of a passed filespec, depending on the option passed.
Possible options are:

[Drive]

Thefile'sdrive. On platforms that don't have the concept of adrive letter, returns blank.
[Name]

Thefile's name. Thisisthe string following the last path delimiter (if there is one).
[Path]

Thefile's path. Thisisthe string up to, but not including the last path delimiter.
Only thefirst letter of option is required.

FILESPEC ('Drive', 'C:\config.sys"') 'C!’

FILESPEC ('Name', 'C:\config.sys"') 'config.sys'
FILESPEC ('Path', 'C:\config.sys"') "\

FILESPEC ('Drive', '/usr/bin/regina') Uy

FILESPEC ('Name', '/usr/bin/regina') 'regina'
FILESPEC ('Path', '/usr/bin/regina') '/usr/bin’

FIND (string, phrase) - (CMS)

Searches string for the first occurrence of the sequence of blank-delimited words phrase, and return
the word number of the first word of phrasein string. Multiple blanks between words are treated as
asingle blank for the comparison. Returns O if phrase not found. Deprecated: see WORDPOS().

FIND('now is the time', 'is the time') 2
FIND('now is the time', 'is the') 2
FIND('now is the time','is time') 0

FORK() - (REGINA)

This function spawns a new process as a child of the current process at the current point in the
program where FORK is called. The program then continues from this point as two separate
processes; the parent and the child. FORK returns O to the child process, and the processid of the
child process spawned to the parent (always non-zero). A negative return value indicates an error
while attempting to create the new process. FORK is not available on all platforms. If FORK is not
supported, it will always return '1'. It is safe to assume that areturn value of '1' means that FORK is
not supported. All platforms AFAIK, will never return '1' as a child process id; that number is
usually reserved for the first process that starts on a machine.

FORK () '0' /* To child */
'3456' /* maybe to parent */

87

FORM() - (ANST)

Returns the current "form", in which numbers are presented when exponential formisused. This
might be either SCIENTIFIC (thedefault) or ENGINEERING. Thisvalueis set through the
NUMERIC FORM clause. For more information, see the documentation on NUMERIC.

FORM () ‘ 'SCIENTIFIC' /* Maybe */

FORMAT (number [, [before] [,[after] [, [expp] [,[expt]]]]]) - (ANSI)

This function is used to control the format of numbers, and you may request the size and format in
which the number is written. The parameter number is the number to be formatted, and it must be a
valid REXX number. note that before any conversion or formatting is done, this number will be
normalized according to the current setting of NUMERIC.

The before and after parameters determines how many characters that are used before and after the
decimal point, respectively. Note that before does not specify the number of digitsin the integer
part, it specifiesthe size of the field in which the integer part of the number is written. Remember to
alocate space in thisfield for aminus too, if that isrelevant. If the field is not long enough to hold
the integer part (including aminusif relevant), an error is reported.

The after parameter will dictate the size of the field in which the fractional part of the number is
written. The decimal point itself isnot a part of that field, but the decimal point will be omitted if
the field holding the fractional part is empty. If there are less digits in the number than the size of
the field, it is padded with zeros at the right. If there is more digits then it is possible to fit into the
field, the number will be rounded (not truncated) to fit the field.

Before must at least be large enough to hold the integer part of number. Therefore it can never be
lessthan 1, and never lessthan 2 for negative numbers. The integer field will have no leading
zeros, except asingle zero digit if theinteger part of number is empty.

The parameter expp the size of the field in which the exponent is written. Thisis the size of the
numeric part of the exponent, so the "E" and the sign comes in addition, i.e. the real length if the
exponent is two more than expp specifies. If expp is zero, it signalizes that exponential form should
not be used. Expp must be a non-negative whole number. If expp is positive, but not large enough
to hold the exponent, an error is reported.

Expt isthe trigger value that decides when to switch from simple to exponential form. Normally, the
default precison (NUMERIC DIGITS) isused, butif exptisset, it will override that. Note that if
expt is set to zero, exponentia form will aways be used. However, if expt tries to force exponential
form, ssimple form will still be used if expp is zero. Negative values for expt will give an error.
Exponential form is used if more digits than expt is needed in the integer part, or more than twice
expt digits are needed in the fractional part.

Note that the after number will mean different thingsin exponential and ssmple form. If after is set

to e.g. 3, thenin simple form it will force the precision to 0.001, no matter the magnitude of the
number. If in exponential form, it will force the number to 4 digits precision.

88

FORMAT (12.34, 3, 4) ' 12.3400"
FORMAT (12.34,3,,3,0) ' 1.234E+001"
FORMAT (12.34,3,1) ' 12.3400"
FORMAT (12.34,3,0) 112.3!

FORMAT (12.34, 3, 4) ro12!

FORMAT (12.34,,,,0) '1.234E+1"
FORMAT (12.34,,,0) 112.34"

FORMAT (12.34,,,0,0) '12.34"

FREESPACE (address, length) - (AREXX)

Returns a block of memory of the given length to the interpreter'sinternal pool. The address
argument must be a 4-byte string obtained by a prior call to GETSPACE(),the internal alocator. It is
not always necessary to release internally-allocated memory,since it will be released to the system
when the program terminates. However,if avery large block has been alocated,returning it to the
pool may avoid memory space problems. The return value is a boolean success flag.

See a'so GETSPACE()

FREESPACE ('00042000'x, 32) 1
FUZZ () - (ANSI)
Returns the current number of digits which are ignored when comparing numbers, during operations
like = and >. The default value for thisis 0. Thisvalueis set using the NUMERIC FUZZ Statement,

for more information see that.

FUZZ () '0' /* Maybe */

GETENV (environmentvar) - (REGINA)
Returns the named UNIX environment variable. If thisvariable is not defined, anullstring is
returned. It isnot possible to use this function to determine whether the variable was unset, or just
Set to the nullstring.
This function is now obsolete, instead you should use:

VALUE (environmentvar, ,'SYSTEM')
GETPID() - (REGINA)

Returns the processid of the currently running process.

GETPID () '234' /* Maybe */

89

GETSPACE (length) - (AREXX)

Allocates a block of memory of the specified length from the interpreter's internal pool. The
returned value is the 4-byte address of the allocated block, which is not cleared or otherwise
initialized. Internal memory is automatically returned to the system when the Rexx program
terminates,so this function

should not be used to alocate memory for use by external programs.

See also FREESPACE()

GETSPACE (32) '"0003BF40' /* maybe */

GETTID() - (REGINA)

Returns the thread id of the currently running process.

GETTID () '2' /* Maybe */
HASH (string) - (AREXX)

Returns the hash attribute of a string as a decimal number,and updates the internal hash value of the
string.

HASH('1") '49"
IMPORT (address [,length]) - (AREXX)
Creates a string by copying data from the specified 4-byte address. If the length parameter is not
supplied,the copy terminates when a null byte is found.
See also EXPORTY()
Note that the address specified is subject to a machine's endianess.

IMPORT ('0004 0000'x,10) 'The answer' /* maybe */
INDEX (haystack, needle [,start]) - (CMS)
Returns the character position of the string needle in haystack. If needleis not found, O is returned.
By default the search starts at the first character of haystack (start is 1). This can be overridden by

giving adifferent start, which must be a positive, whole number. See POS function for an ANSI
function that does the same thing.

INDEX ('abcdef', 'cd") '3
INDEX ('abcdef', 'xd") 0!
INDEX ('abcdef', 'be', 3) 'O’
INDEX ('abcabc', 'bc', 3) '5!
INDEX ('abcabc', 'bc', 6) '0"

0

INSERT (stringl, string2 [,position [,length [,padchar]]]) - (ANSI)

Returns the result of inserting stringl into a copy of string2. If position is specified, it marks the
character in string2 which stringl it to be inserted after. Position must be a non-negative whole
number, and it defaultsto 0, which means that string2 is put in front of the first character in stringl.

If length is specified, stringl is truncated or padded on the right side to make it exactly length
characterslong beforeit isinserted. If padding occurs, then padchar is used, or <space> if padchar
is undefined.

INSERT ('first', 'SECOND') 'firstSECOND'
INSERT ('first', "SECOND', 3) 'SECfirstOND'
INSERT ('first', "SECOND', 3,10) 'SECfirst OND'
INSERT ('first', "SECOND', 3,10, '*") "SECfirst*****OND'
INSERT ('first', "SECOND', 3, 4) '"SECfirsOND'
INSERT ('first', "SECOND', 8) 'SECOND first'

JUSTIFY (string, length [,pad]) - (CMS)

Formats blank-delimited words in string, by adding pad characters between words to justify to both
margins. That is, to width length (Iength must be non-negative). The default pad character isa
blank.

string isfirst normalized as though SPACE(string) had been executed (that is, multiple blanks are
converted to single blanks, and leading and trailing blanks are removed). If length isless than the
width of the normalized string, the string is then truncated on the right and any trailing blank is
removed. Extrapad characters are then added evenly from the left to right to provide the required
length, and the blanks between words are replaced with the pad character.

JUSTIFY ('The blue sky',14) 'The Dblue sky'
JUSTIFY ('The blue sky', 8) 'The blue'
JUSTIFY ('The blue sky',9) 'The Dblue'
JUSTIFY ('The blue sky',9,'+") 'The++blue'

LASTPOS (needle, haystack [,start]) - (ANSI)

Searches the string haystack for the string needle, and returns the position in haystack of the first
character in the substring that matched needle. The search is started from the right side, so if needle
occurs several times, the last occurrence is reported.

If start is specified, the search starts at character number start in haystack. Note that the standard

only states that the search starts at the startth character. It is not stated whether a match can partly
be to the right of the start position, so some implementations may differ on that point.

91

LASTPOS ('be',To be or not to be') 17

LASTPOS ('to',to be or not to be',10) 3
LASTPOS ('is',to be or not to be') 0
LASTPOS ('to',to be or not to be',0) 0

LEFT (string, length [,padchar]) - (ANSI)

Returns the length leftmost charactersin string. If length (which must be a non-negative whole
number) is greater than the length of string, the result is padded on the right with <space> (or
padchar if that is specified) to make it the correct length.

LEFT ('Foo bar',5) 'Foo b'

LEFT ('Foo bar', 3) 'Foo'

LEFT ('Foo bar',10) 'Foo bar !
LEFT ('Foo bar',10,'*") 'Foo bar***!

LENGTH (string) - (ANSI)

Returns the number of charactersin string.

LENGTH(""') 0"
LENGTH ('Foo'") '3
LENGTH ('Foo bar') '
LENGTH (' foo Dbar ') '10"

LINEIN([streamid] [, [1line] [,count]]) (ANSI)

Returns aline read from afile. When only streamid is specified, the reading starts at the current
read position and continues to the first End-Of-Line (EOL) mark. Afterward, the current read
position is set to the character after the EOL mark which terminated the read-operation. If the
operating system uses special characters for EOL marks, these are not returned by as a part of the
string read..

The default value for streamid is default input stream. The format and range of the string streamid
are implementation dependent.

The line parameter (which must be a positive whole number) might be specified to set the current
position in the file to the beginning of line number line before the read operation starts. If lineis
unspecified, the current position will not be changed before the read operation. Note that lineis only
valid for persistent steams. For transient streams, an error isreported if lineis specified. The first
linein the stream is numbered 1.

Count specifies the number of linesto read. However, it can only take the values 0 and 1. When it

is 1 (which isthe default), it will read oneline. When itis 0 it will not read any lines, and a
nullstring is returned. This has the effect of setting the current read position of the file if line was

92

specified.

What happens when the functions finds a End-Of-File (EOF) condition isto some extent
implementation dependent. The implementation may interpret the EOF as an implicit End-Of-Line
(EOL) mark is none such was explicitly present. The implementation may also choose to raise the
NOTREADY condition flag (this condition is new from REXX language level 4.00).

Whether or not stream must be explicitly opened before aread operation can be performed, is
implementation dependent. In many implementations, aread or write operation will implicitly open
the stream if not already open.

Assuming that thefile /tmp/ f1i1le containsthe threelines: "First line", Second line" and "Third
line":

LINEIN('/tmp/file', 1) 'First line'
LINEIN('/tmp/file') 'Second line'
LINEIN('/tmp/file',1,0) ''" /* But sets read position */
LINEIN('/tmp/file") 'First line'

LINEIN () '"Hi, there!' /* maybe */

LINEOUT ([streamid] [, [string] [,line]]) - (ANSI)

Returns the number of lines remaining after having positioned the stream streamid to the start of
line line and written out string as aline of text. If streamid is omitted, the default output streamis
used. If line (which must be a positive whole number) is omitted, the stream will not be
repositioned before the write. If string is omitted, nothing is written to the stream. If stringis
specified, a system-specific action is taken after it has been written to stream, to mark anew line.

The format and contents of the first parameter will depend upon the implementation and how it
names streams. Consult implementation-specific documentation for more information.

If string is specified, but not line, the effect isto write string to the stream, starting at the current
write position. If line is specified, but not string, the effect isonly to position the stream at the new
position. Note that the line parameter isonly legal if the stream is persistent; you can not position
the current write position for transient streams.

If neither line nor string is specified, the standard requires that the current write position is set the
end of the stream, and implementation specific side-effects may occur. In practice, this means that
an implementation can use this situation to do things like closing the stream, or flushing the outpui.
Consult the implementation specific documentation for more information.

Also note that the return value of this functions may be of little or no value, If just ahalf lineis
written, 1 may still be returned, and there are no way of finding out how much (if any) of string was
written. If string is not specified, the return value will always be 0, even if LINEOUT () was not
able to correctly position the stream.

If it isimpossible to correctly write string to the stream, the NOTREADY flag will be raised. It is not
defined whether or not the NOTREADY flagisraised when LINEOUT () isused for positioning, and

93

thisis not possible.

Note that if you write string to aline in the middle of the stream (i.e. line isless than the total
number of linesin the stream), then the behavior is system and implementation specific. Some
systems will truncate the stream after the newly written line, other will only truncate if the newly
written line has a different length than the old line which it replaced, and yet other systems will
overwrite and never truncate.

In general, consult your system and implementation specific documentation for more information
about this function. You can safely assume very little about how it behaves.

LINEOUT (, '"First line') 1!
LINEOUT ('/tmp/file', 'Second line',?2) 1
LINEOUT ('/tmp/file', 'Third line') 'l
LINEOUT ('/tmp/file', 'Fourth line',4) 0!

LINES ([streamid] [,option]) - (ANSI)

Returns 1 if there is at least one complete line remaining in the named file streamor O if no
complete linesremain in the file. A completelineisnot really as complete as the name might
indicate; a complete line is zero or more characters, followed by an End-Of-Line (EOL) marker. So,
if you have read half aline already, you still have a"complete” line |eft. Note that it is not defined
what to do with a half-finished line at the end of afile. Some interpreters might interpret the End-
Of-File asan implicit EOL mark too, while others might not.

The format and contents of the stream streamid is system and implementation dependent. If
omitted, the default input stream will be used.

The ANSI Standard has extended this function from TRL2. It allows an option:

[C]
(Count) Returns the actual number of complete lines remaining in the stream, irrespective of
how expensive this operation is.

[N]
(Normal) Returns 1 if thereis at least one complete line remaining in the file or O if no lines
remain. Thisisthe default. To maintain backwards compatibility with older releases of
Regina, the OPTION; NOFAST_LINES BIF DEFAULT can be used to make the default
option behave as though LINES(streamid,'C’) was specified.

LINESwill only return O or 1 for al transient streams, as the interpreter can not reposition in these
files, and can therefore not count the number of remaining lines.

As aresult, defensive programming indicates that you can safely only assume that this function will
return either O or anon-zero result. If you want to use the non-zero result to more than just an
indicator on whether more lines are available, you must check that it islarger than one. If so, you
can safely assume that it hold the number of available lines |eft.

Aswith all the functions operating on streams, you can safely assume very little about this function,

94

so consult the system and implementation specific documentation.

LINES () '1' /* Maybe */
LINES () '0' /* Maybe */
LINES('/tmp/file','C") '2' /* Maybe */
LINES ('/tmp/file') '1' /* Maybe */

LOWER (string [,start [,length [,pad]]]) - (REGINA)

Trandates the substring of string that starts at start, and has the length length to lower case. Length
defaults to the rest of the string. Sart must be a positive whole, while length can be any non-
negative whole number.

It isnot an error for start to be larger than the length of string. If length is specified and the sum of
length and start minus 1 is greater that the length of string, then the result will be padded with
padchars to the specified length. The default value for padchar is the <space> character.

If aspecific localeis set (viathe -l switch), then the string is set to the correct lowercase values
based on that locale.

LOWER ('One Fine Day') 'one fine day'
LOWER ('FRED', 2) 'Fred'

LOWER ('FRED', 3, 1) "FreD'

LOWER ('FRED',1, 10, '*') 'fredx*xxxx!

MAKEBUF () - (CMS)

Creates anew buffer on the stack, at the current top of the stack. Each new buffer will be assigned
anumber; the first buffer being assigned the number 1. A new buffer will be assigned a number
which is one higher than the currently highest number of any buffer on the stack. In practice, this
means that the buffers are numbered, with the bottom-most having the number 1 and the topmost
having a number which value isidentical to the number of buffers currently in the stack.

The value returned from this function is the number assigned to the newly created buffer. The
assigned number will be one more than the number of buffers already in the stack, so the numbers
will be "recycled”. Thus, the assigned numbers will not necessarily be in sequence.

MAKEBUF () 1 /* if no buffers existed */
MAKEBUF () 6 /* if 5 buffers existed */
MAX (numberl [,number2] ...) - (ANSI)

Takes any positive number of parameters, and will return the parameter that had the highest
numerical value. The parameters may be any valid REXX number. The number that isreturned, is
normalized according to the current settings of NUMERIC, so the result need not be strictly equal to
any of the parameters.

95

Actually, the standard says that the value returned is the first number in the parameter list whichis
equal to the result of adding a positive number or zero to any of the other parameters. Note that this
definition opens for "strange” resultsif you are brave enough to play around with the settings of
NUMERIC FUZZ.

MAX (1,2,3,5,4) 'S5
MAX (6) 'o!
X(-4,.001E3,4) 4"
X(1,2,05.0,4) '5.0"
MIN (number [,number] ...) - (ANSI)

Like MAX (), except that the lowest numerical valueis returned. For more information, see MAX () .

MIN(5,4,3,1,2) 1
MIN (6) '6!
MIN (-4, .001E3, 4) '-4"
MIN(1,2,05.0E-1,4) '0.50"

OPEN(file, filename, ['Append'|'Read'|'Write']) - (AREXX)

Opens afile for the specified operation. The file argument defines the logical name by which the
filewill be referenced. The filename is the external name of the file, and may include any portions
of afull file path.

The function returns a boolean val ue that indicates whether the operation was successful. Thereis
no limit to the number of files that can be open simultaneously, and al open files are closed
automatically when the program exits.

See also CLOSE(), READ(), WRITE()

OPEN ('myfile', 'c:\temp\aa.txt', 'R’ T
)

OPEN ('infile', '/tmp/fred.txt') 10

OVERLAY (stringl, string2 [, [start] [,[length] [,padchar]]]) -
(ANSI)

Returns a copy of string2, totally or partially overwritten by stringl. If these are the only arguments,
the overwriting starts at the first character in string2.

If start is specified, the first character in stringl overwrites character number start in string2. Start
must be a positive whole number, and defaultsto 1, i.e. thefirst character of stringl. If the start
position isto the right of the end of string2, then string2 is padded at the right hand end to make it
start-1 characterslong, before stringl is added.

If length is specified, then string2 will be stripped or padded at the right hand end to match the

96

specified length. For padding (of both strings) padchar will be used, or <space> if padchar is
unspecified. Length must be non-negative, and defaults to the length of stringl.

OVERLAY ('NEW', 'old-value') 'NEW-value'
OVERLAY ("NEW', 'old-value', 4) 'oldNEWlue'
OVERLAY ('NEW', 'old-value', 4,5) '0ldNEW e
OVERLAY ('"NEW', 'old-value',4,5,"'*") 'OldNEW* *e''
OVERLAY ('NEW', 'old-value', 4, 2) 'oldNEalue'
OVERLAY ('NEW', 'old-value', 9) 'old-valuNEW'
OVERLAY ('NEW', 'old-value',12) 'old-value NEW'
OVERLAY ('NEW', 'old-value',12,,'*") 'old-value**NEW'
OVERLAY ('"NEW', 'old-value',12,5,'*") 'old-value**NEW**'

POOLID() - (REGINA)

Returns the current call level for the current procedure.

POOLID () '1' /* top level */
POOLID () '6' /* 6% level call nesting
*/

POPEN (command [,stem.]) - (REGINA)

Runs the operating system command. If the optional stem. is supplied al output from the command
Is placed in the specified stem variable as a REXX array. Note that only the command's stdout can
be captured.

This command is now deprecated. ADDRESS WITH can do the same thing, and can aso capture
the command's stderr.

POPEN('ls -1', 'lists.') /* LISTS. stem has list
25

ADDRESS SYSTEM 'ls -1'" WITH OUTPUT /* same as above */

STEM LISTS.

POS (needle, haystack [,start]) - (ANSI)

Seeks for an occurrence of the string needle in the string haystack. If needleis not found, then 0 is
returned. Else, the position in haystack of the first character in the part that matched is returned,
which will be a positive whole number. If start (which must be a positive whole number) is
specified, the search for needle will start at position start in haystack.

97

POS('be', 'to be or not to be') 4
POS('to', '"to be or not to be',10) 14
POS('is', 'to be or not to be') 0
POS('to', '"to be or not to be',18) 0

PUTENV (environmentvar=[value]) - (REGINA)

Setsthe value of the named system environment variable or deletesit. The existing valueis
returned if the environment variable has avalue or if this environment variable is not defined, a
nullstring is returned.

If no valueis supplied, the system environment variable is deleted. Thisis the only mechanism
available to delete a system environment variable.

PUTENV (' FRED=hello"') "' /* If unset */
PUTENV ('FRED=") '"hello' /* variable deleted */

QUALIFY ([streamid]) - (ANSI)

Returns a name for the streamid. The two names are currently associated with the same resource
and the result of this function may be more persistently associated with that resource.

QUALIFY ('../mypath/fred.the') ' /home/mark/mypath/fred. the'

QUEUED () - (ANSI)

Returns the number of lines currently in the external data queue (the "stack™). Note that the stack is
a concept external to REXX, this function may depend on the implementation and system Consult
the system specific documentation for more information.

QUEUED () '0' /* Maybe */
QUEUED () '42' /* Maybe */

RANDOM (max) - (ANSI)

RANDOM ([min] [, [max] [,seed]]) - (ANSI)

Returns a pseudo-random whole number. If called with only the first parameter, the first format will
be used, and the number returned will be in the range 0 to the value of the first parameter, inclusive.
Then the parameter max must be a non-negative whole number, not greater than 100000.

If called with more than one parameter, or with one parameter, which is not the first, the second
format will be used. Then min and max must be positive whole numbers, and max can not be less
than min, and the difference max-min can not be more than 100000. If one or both of them is
unspecified, the default for minis 0, and the default for max is 999.

98

If seed is specified; (it must be a positive whole number) you may control which numbers the
pseudo-random algorithm will generate. If you do not specify it, it will be set to some "random"
value at thefirst call to RANDOM () (typically afunction of the time). When specifying seed, it will
effect the result of the current call to RANDOM () .

The standard does not require that a specific method is to be used for generating the pseudo-random
numbers, so the reproducibility can only be guaranteed aslong as you use the same implementation
on the same machine, using the same operating system. If any of these change, a given seed may
produce a different sequence of pseudo-random numbers.

Note that depending on the implementation, some numbers might have a slightly increased chance
of turning up than other. If the REXX implementation uses a 32 bit pseudo-random generator
provided by the operating system and returns the remainder after integer dividing it by the
difference of min and max, low numbers are favored if the 232 is not a multiple of that difference.
Supposing that the call isRANDOM (100000) and the pseudo-random generator generates any 32
bit number with equal chance, the change of getting a number in the range 0-67296 is about
0.000010000076, while the changes of getting a number in the range 67297-100000 is about
0.000009999843.

A much worse problem with pseudo-random numbers are that they sometimes do not tend to be
random at all. Under one operating system (name withheld to protect the guilty), the system's
pseudo-random routine returned numbers where the last binary digit alternated between 0 and 1. On
that machine, RANDOM (1) would return the seriesQ, 1, 0, 1, 0, 1, O, 1 etc., which is hardly random
at all. You should therefore never trust the pseudo-random routine to give you random numbers.

Note that due to the specia syntax, thereis abig difference between using RANDOM (10) and
RANDOM (10,). The former will give a pseudo-random number in the range 0-10, while the latter
will give a pseudo-random number in the range 10-999.

Also note that it is not clear whether the standard allows min to be equal to max, so to program
compatible, make sure that max is always larger than min.

RANDOM () '123' /*Between 0 and 999 */

RANDOM (10) '5' /*Between 0 and 10 */

RANDOM (, 10) '3' /*Between 0 and 10 */

RANDOM (20, 30) '27'" /*Between 20 and 30 */

RANDOM (, ,12345) '765"'" /*Between 0 and 999, and sets seed
*/

RANDU ([seed]) - (AREXX)

Returns a uniformly-distributed pseudo random number between 0 and 1. The number of digits of
precision in the result is always equal to the current Numeric Digits setting. With the choice of
suitable scaling and translation values, RANDU()can be used to generate pseudo random numbers
on an arbitrary interval.

The optional seed argument is used to initialize the internal state of the random number generator.
See also RANDOM()

99

RANDU () '0.371902021"

RANDU (45) '0.873' /*numeric digits
3%/

READCH (file, length) - (AREXX)

Reads the specified number of characters from the given logical file and returns them. The length of
the returned string is the actual number of characters read,and may be less than the requested length
if, for example, the end-of-file was reached.

See d'so READLN()

READCH ('infile',10) 'a string o'
READLN (file) - (AREXX)

Reads characters from the given logical file into a string until a"newline" character isfound. The
returned string does not include the "newline".
See also READCH()

READLN ('infile') 'a string of chars'

REVERSE (string) - (ANST)

Returns a string of the same length as string, but having the order of the characters reversed.

REVERSE ('FooBar') 'raBooF"'
REVERSE (' Foo Bar') 'raB ooF '
REVERSE ('3.14159") '95141.3"

RIGHT (string, length[,padchar]) - (ANSI)

Returns the length rightmost charactersin string. If length (which must be a non-negative whole
number) is greater than the length of string the result is padded on the left with the necessary
number of padcharsto make it aslong as length specifies. Padchar defaults to <space>.

RIGHT ('Foo bar',b5) 'o bar'

RIGHT ('Foo bar', 3) 'bar'

RIGHT ('Foo bar',10) ! Foo bar'
RIGHT ('Foo bar',10,'*") '1'***Foo bar'

RXFUNCADD (externalname, library, internalname) - (SAA)

Registers the internalname in library as an external function callable from with the current program
by referencing externalname. library isa REXX external function package in the format of shared
library or dynamic link library (DLL). library and internalname are case-sensitive. library isthe
base name of the shared library or dynamic link library. On platforms that support DLLs, the full

100

name of the external function packageis library.dll. On Unix environments, the full name of the
shared library isliblibrary.a (A1X), liblibrary.d (HPUX) or liblibrary.so (most other Unixes).
External function packages are searched for in the location where shared librariesor DLLs are
normally found by the operating system. DLLs are normally located in directories specified in the
PATH or LIBPATH environment variables. Shared libraries are normally searched for in
LD_LIBRARY_PATH or LIBPATH environment variables.

This function returns O if the function is registered successfully.

RXFUNCADD ('SQLLoadFuncs', 'rexxsqgl', 'SQLLoadFuncs' 0
)

RXFUNCDROP (externalname) - (SAA)

Removes the specified externalname from the list of external functions available to be called. This
function returns O if the function was successfully dropped.

RXFUNCDROP ('SQLLoadFuncs"') 0
RXFUNCERRMSG () - (REGINA)

Returns the error message associated with the last call to RXFUNCADD. Thisfunction is generally
used immediately after afailed call to RXFUNCADD to determine why it failed.

RXFUNCERRMSG () 'rexxsqgl.dll not found' /* Maybe */
RXFUNCQUERY (externalname) - (SAA)
Returns O if the externalname is already registered, or 1 if the externalname is not registered.

RXFUNCQUEURY ('SQLLoadFuncs') 1 /* Maybe */
RXQUEUE (command [,queue|timeout]) - (0S/2)

This function interfaces to the Reginainternal or external queue mechanism. If OPTIONS
INTERNAL_QUEUES is set, al operations on queues are interna to the interpreter.

[C]
(Create) Request the interpreter or rxstack to create a new named queue. If the queue name
already exists, a new unique queue name is generated. The name of the queue that was
created (either the specified queue or the system-generated queue) is returned. All queue
names are case-insensitive; i.e. the queue name FRED and fred are the same.

[D]
(Delete) Deletes the specified queue. The default queue; SESSION becomes the current
queue.

[G]
(Get) Returns the current queue name.

[S]
(Set) Setsthe current queue name to that queue specified. The previously current queueis

101

returned. It isvalid to set a queue name to a queue that has not been created.

[T]
(Timeout) Sets the timeout period (in milliseconds) to wait for something to appear on the
current queue (as set by RXQUEUE('S, queue)). By default, when alineisread from a
queue will a PULL command, it either returns immediately with the top line in the stack, or
it will wait for aline to be entered by the user viathe process stdin. If O is specified, Regina
will wait forever for alineto be ready on the stack.
An error will result if an attempt is made to set atimeout on an internal queue; timeouts only
make sense on external queues (ie those with a'@' in them that use the rxstack process).

RXQUEUE ('Create') 'S0738280"
RXQUEUE ('Create', "fred') 'FRED'
RXQUEUE ('Create', 'fred') 'S88381"
RXQUEUE ('Get ") 'S88381"
RXQUEUE ('Delete', "fred"') 'SESSION'
RXQUEUE ('Set', "'fred"') 'SESSION'
RXQUEUE ('Timeout', 10) '0"

SEEK (file, offset, ['Begin'|'Current'|'End') - (AREXX)

Movesto a new position in the given logical file, specified as an offset from an anchor position. The
default anchor is Current. The returned value is the new position relative to the start of thefile.

SEEK('infile',10, 'B'") '10"
SEEK('infile',0,'E") '356"' /* file length */

SHOW (option, [name], [pad]) - (AREXX)

Returns the names in the resource list specified by the option argument, or tests to see whether an
entry with the specified name is available. The currently implemented options keywords are Clip,
Files, Libraries, and Ports, which are described below.

Clip. Examines the namesin the Clip List.

Files. Examines the names of the currently open logical file names.

Libraries. Examinesthe namesin the Library List,which are either function libraries or function
hosts.

Ports. Examine the names in the system Ports List.

If the name argument is omitted, the function returns a string with the resource names separated by
ablank space or the pad character,if one was supplied. If the name argument is given, the returned
boolean value indicates whether the name was found in the resource list. The name entries are case-
sensitive.

Only the Files option is valid on all platforms. All other values for option are only applicable to the
Amiga and AROS ports.

SIGN (number) - (ANSI)

Returns either -1, 0 or 1, depending on whether number is negative, zero, or positive, respectively.

102

Number must be avalid REXX number, and are normalized according to the current settings of
NUMERIC before comparison.

SIGN (-12) '-1"
SIGN (42) 1
SIGN (-0.00000012) i=1"
SIGN (0.000) '0"
SIGN (-0.0) '0"

SLEEP (seconds) - (CMS)

Pauses for the supplied number of seconds.

‘ SLEEP (5) /* sleeps for 5 seconds */
SOURCELINE ([lineno]) - (ANSI)

If lineno (which must be a positive whole number) is specified, this function will return a string
containing a copy of the REXX script source code on that line. If lineno is greater than the number
of linesin the REXX script source code, an error is reported.

If lineno is unspecified, the number of linesin the REXX script source code is returned.

Note that from REXX language level 3.50 to 4.00, the requirements of this function were relaxed to
simplify execution when the source code is not available (compiled or pre-parsed REXX). An
implementation might make two simplifications: to return 0 if called without a parameter. If so, any

call to SOURCELINE () with aparameter will generate an error. The other simplification isto
return anullstring for any call to SOURCELINE () with alegal parameter.

Note that the code executed by the INTERPRET clause can not be retrieved by SOURCELINE ().

SOURCELINE () 42" /*Maybe x/
SOURCELINE (1) '/* This Rexx script will ... */!
SOURCELINE (23) 'var = 12' /*Maybe */'

SPACE (string[, [length] [,padchar]]) - (ANSI)

With only one parameter string is returned, stripped of any trailing or leading blanks, and any
consecutive blanks inside string translated to a single <space> character (or padchar if specified).

Length must be a non-negative whole number. If specified, consecutive blanks within string are
replaced by exactly length instances of <space> (or padchar if specified). However, padchar will
only be used in the output string, in the input string, blanks will still be the "magic" characters. Asa
consequence, if there exist any padcharsin string, they will remain untouched and will not affect
the spacing.

103

SPACE (' Foo bar ') 'Foo bar'
SPACE (' Foo Dbar ',2) 'Foo Dbar'
SPACE(' Foo Dbar ',,'*") 'Foo*bar'
SPACE ('Foo bar',3, '-"') 'Foo——-bar'
SPACE ('Foo bar',,'o'") 'Fooobar'

STATE (streamid) - (CMS)

Returns O if the streamid exists, or 1 if it does not. Use STREAM(streamid, 'C', 'QUERY EXISTS)
for portability.

STORAGE ([address], [string], [length], [pad]) - (AREXX)

Cadling STORAGE() with no arguments returns the available system memory. If the address
argument is given, it must be a 4-byte string,and the function copies data from the optional string
into the indicated memory area. The length parameter specifies the maximum number of bytes to be
copied,and defaults to the length of the string. If the specified length islonger than the string,the
remaining areais filled with the pad character or nulls('00'x.)

The returned value is the previous contents of the memory area. This can be used in a subsequent
call to restore the original contents.

Caution isadvised in using thisfunction. Any area of memory can be overwritten,possibly
causing a system crash.

STORAGE () '248400"

STORAGE ('0004 0000'x, '"The answer') 'question' /* maybe */

STREAM (streamid[,option[,command]]) (ANSI)

This function was added to REXX in language level 4.00. It provides a general mechanism for
doing operations on streams. However, very little is specified about how the internal of this function
should work, so you should consult the implementation specific documentation for more
information.

The streamid identifies a stream. The actual contents and format of this string isimplementation
dependent.

The option selects one of several operations which STREAM () isto perform. The possible
operations are:

[C]
(Command) If this option is selected, athird parameter must be present, command, which is
the command to be performed on the stream. The contents of command is implementation
dependent. For Regina, the valid commands follow. Commands consist of one or more
space separated words.

[D]
(Description) Returns a description of the state of streamid. The return valueis
implementation dependent.

104

[s]
(Status) Returns a state which describes the state of streamid. The standard requiresthat it is
one of the following: ERROR, NOTREADY, READY and UNKNOWN. The meaning of these

are described in the chapter; Stream Input and Output.

Note that the options Description and Status realy have the same function, but that Status
in general isimplementation independent, while Description isimplementation dependent.

The command specifies the command to be performed on streamid. The possible operations are:

[READ]
Open for read access. The file pointer will be positioned at the start of the file, and only read
operations are allowed. This command is Regina-specific; uses OPEN READ in its place.
[WRITE]
Open for write access and position the current write position at the end of the file. An error
isreturned if it was not possible to get appropriate access. This command is Regina-
specific; use OPEN WRITE initsplace.
[APPEND]
Open for append access and position the current write position at the end of the file. An
error isreturned if it was not possible to get appropriate access. This command is Regina-
specific; use OPEN WRITE APPEND in itsplace.
[UPDATE]
Open for append access and position the current write position at the end of the file. An
error isreturned if it was not possible to get appropriate access. This command is Regina-
specific; use OPEN BOTH in its place.
[CREATE]
Open for write access and position the current write position at the start of the file. An error
isreturned if it was not possible to get appropriate access. This command is Regina-
specific; use OPEN WRITE REPLACE initsplace.
[CLOSE]
Close the stream, flushing any pending writes. An error is returned if it was not possible to
get appropriate access.
[FLUSH]
Flush any pending write to the stream. An error is returned if it was not possible to get
appropriate access.
[STATUS]
Returns status information about the stream in human readable form that Regina stores
about the stream.
[FSTAT]
Returns status information from the operating system about the stream. This consists of at
least 8 words:
Device Number Under DOS, Win32, OS/2, this represents the disk number, with
0 being DriveA.
Inode Number Under DOS, Win32, OS/2, thisis zero.
Permissions User/Group/Other permissions mask. Consists of 3 octal
numbers with 4 representing read, 2 representing write, and 1
representing execute. Therefore avaue of 750 is
read/write/execute for user, read/execute for group, and no
permissions for other.

105

Number Links
User Name

Group Name

Size
Stream Type

[RESET]

Under DOS, Win32, 0S/2, thiswill aways be 1.

The owner of the stream. Under DOS, Win32, OS2, this will
alwaysbe “USER”.

The group owner of the stream. Under DOS, Win32, OS2, this
will always be “GROUP”".

Size of stream in bytes.

One or more of the following:

RegularFile anormal file.

Directory adirectory.

Block Special a block special file.

FIFO usuadly apipe.

SymbolicLink asymbolic link. If the stream is a symbolic link,
the the details returned are details about the link, not the file the
link points to.

Socket a socket

SpecialName a named special file.

Char acter Special a character special file.

Resets the stream after an error. Only streams that are resettable can be reset.

[READABLE]

Returns 1 if the stream is readable by the user or O otherwise.

[WRITABLE]

Returns 1 if the stream is writable by the user or O otherwise.

[EXECUTABLE]

Returns 1 if the stream is executable by the user or 0 otherwise.

[QUERY]

Returns information about the named stream. |f the named stream does not exists, then the
empty string is returned. This command is further broken down into the following sub-

commands;
DATETIME

EXISTS

HANDLE

SEEK READ CHAR

SEEK READ LINE

returns the date and time of last modification of the stream in
Rexx US Date format; MM-DD-YY HH:MM:SS.

returns the fully-qualified file name of the specified stream.
returns the internal file handle of the stream. Thiswill only
return avalid value if the stream was opened explicitly or
implicitly by Regina.

returns the current read position of the open stream expressed in
characters.

returns the current read position of the open stream expressed in
lines.

SEEK WRITE CHAR returnsthe current write position of the open stream expressed in

SEEK WRITE LINE

SEEK SYS

SIZE
STREAMTYPE

TIMESTAMP

characters.

returns the current write position of the open stream expressed in
lines.

returns the current read position of the open stream as the
operating reportsit. Thisisexpressed in characters.

returns the size, expressed in characters, of the persistent stream.
returns the type of the stream. One of TRANSIENT,
PERSISTENT or UNKNOWN is returned.

returns the date and time of last modification of the stream. The

106

format of the string returned isYYYY-MM-DD HH:MM:SS.

You can use POSITION in place of SEEK in the above options.

[OPEN]

Opens the stream in the optional mode specified. If no optional mode is specified, the

default iISOPEN BOTH.
READ

WRITE

BOTH

WRITE APPEND

WRITE REPLACE

BOTH APPEND

BOTH REPLACE

The file pointer will be positioned at the start of the file, and
only read operations are allowed.

Open for write access and position the current write pointer at
the end of the file. On platforms where it is not possible to open
afilefor write without also allowing reads, the read pointer will
be positioned at the start of the file. An error isreturned if it was
not possible to get appropriate access.

Open for read and write access. Position the current read pointer
at the start of the file, and the current write pointer at the end of
thefile. Anerrorisreturned if it was not possible to get
appropriate access.

Open for write access and position the write pointer at the end of
thefile. On platformswhereit isnot possible to open afile for
write without also allowing reads, the read pointer will be
positioned at the start of the file.

Open for write access and position the current write position at
the start of the file. On platforms where it is not possible to
open afile for write without also allowing reads, the read pointer
will be positioned at the start of the file. This operation will
clear the contents of thefile. An error isreturned if it was not
possible to get appropriate access.

Open for read and write access. Position the current read
position at the start of the file, and the current write position at
the end of thefile. Anerror isreturned if it was not possible to
get appropriate access.

Open for read and write access. Position both the current read
and write pointers at the start of the file. An error isreturned if
it was not possible to get appropriate access.

[SEEK position READ|WRITE [CHAR|LINE]]
Positions the file's read or write pointer in the file to the specified position. SEEK isa
synonym for POSITION.

position

A position can be of the following forms. [relative] offset.
relative can be one of:
= Thefile pointer is moved to the specified offset
relative to the start of the file. Thisisthe
default.
< Thefile pointer is moved to the specified offset
relative to the end of thefile.
- The file pointer is moved backwards relative to
the current position.
+ Thefile pointer is moved forwards relative to the
current position.

offset is a positive whole number.

107

READ The read file pointer will be positioned.

WRITE The write file pointer is positioned.
CHAR The offset specified in position above isin terms of characters.
LINE The offset specified in position above isin terms of lines.

Assume afile; '/home/mark/myfile' last changed March 30th 2002 at 15:07:56, with 100 lines, each
line 10 characters long, and the following command executed in sequence.

STREAM ('myfile', 'C', "QUERY EXISTS') '/home/mark/myfile'
STREAM ('myfile', 'C', '"QUERY SIZE') 1100

STREAM ('myfile','C', "QUERY TIMESTAMP') 2002-03-30 15:07:56
STREAM ('myfile', 'C', "QUERY DATETIME') 03-30-02 15:07:56
STREAM ('myfile', 'D")

STREAM ('myfile','S") UNKNOWN

STREAM ('myfile', 'C', "QUERY SEEK READ')
STREAM('myfile', 'C', "OPEN READ') READY :

STREAM ('myfile', 'D")

STREAM ('myfile','S") READY

STREAM ('myfile', 'C', "QUERY SEEK READ') 1

STREAM ('myfile','C', "CLOSE") UNKNOWN

STREAM ('myfile', 'C', 'STATUS')

STREAM ('myfile','C', 'FSTAT') 773 35006 064 1 mark
mark 1100 RegularFile

STREAM ('myfile', 'C', '"READABLE"') 1

STREAM ('myfile', 'C', "WRITABLE') 1

STREAM ('myfile', 'C', '"EXECUTABLE") 0

STREAM ('myfile','C','2?2")

STRIP(string [, [option] [,char]]) - (ANSI)

Returns string after possibly stripping it of any number of leading and/or trailing characters. The
default action is to strip off both leading and trailing blanks. If char (which must be a string
containing exactly one character) is specified, that character will be stripped off instead of blanks.
Inter-word blanks (or charsif defined, that are not leading of trailing) are untouched.

If option is specified, it will define what to strip. The possible values for option are:
[L]
(Leading) Only strip off leading blanks, or charsif specified.

[T]
(Trailing) Only strip off trailing blanks, or charsif specified.

108

[B]
(Both) Combine the effect of 1. and T, that is, strip off both leading and trailing blanks, or
charsif it is specified. Thisisthe default action.

STRIP (' Foo Dbar ') 'Foo Dbar'
STRIP(' Foo bar ','L") 'Foo Dbar '
STRIP(' Foo Dbar ','t') ' Foo Dbar'
STRIP(' Foo bar ', 'Both') 'Foo Dbar'
STRIP('0.1234500',,'0") '.12345"

STRIP('0.1234500 ',,'0") '.1234500"

SUBSTR (string, start [,length [,padchar]]) - (ANSI)

Returns the substring of string that starts at start, and has the length length. Length defaults to the
rest of the string. Start must be a positive whole, while length can be any non-negative whole
number.

It isnot an error for start to be larger than the length of string. If length is specified and the sum of
length and start minus 1 is greater that the length of string, then the result will be padded with
padcharsto the specified length. The default value for padchar is the <space> character.

SUBSTR ('Foo bar', 3) 'o bar'
SUBSTR ('Foo bar', 3, 3) 'o b'
SUBSTR ('Foo bar',4,06) ' bar !
SUBSTR('Foo bar',4,6,'*") ' bar**!
SUBSTR ('Foo bar',9,4,'*") U s v ey U

SUBWORD (string, start [,length]) - (ANSI)

Returns the part of string that starts at blank delimited word start (which must be a positive whole
number). If length (which must be a non-negative whole number) is specified, that number of words
are returned. The default value for length is the rest of the string.

It isnot an error to specify length to refer to more words than string contains, or for start and length
together to specify more words than string holds. The result string will be stripped of any leading
and trailing blanks, but inter-word blanks will be preserved asis.

SUBWORD ('To be or not to be',4) 'not to be'
SUBWORD ('To be or not to be',4,2) 'not to!
SUBWORD ('To be or not to be',4,5) 'not to be'
SUBWORD ('To be or not to be',1,3) 'To be or'

109

SYMBOL (name) - (ANST)

Checksif the string name is avalid symbol (a positive number or a possible variable name), and
returns a three letter string indicating the result of that check. If nameisasymbol, and names a
currently set variable, VAR isreturned, if name is alegal symbol name, but has not a been given a
value (or is aconstant symbol, which can not be used as avariable name), L.IT isreturned to
signify that itisaliteral. Else, if nameisnot alegal symbol name the string BAD is returned.

Watch out for the effect of "double expansion”. Name is interpreted as an expression evaluating
naming the symbol to be checked, so you might have to quote the parameter.

SYMBOL ('Foobar"') 'VAR' /* Maybe */
SYMBOL ('Foo bar') 'BAD'
SYMBOL ('Foo.Foo bar') 'VAR' /* Maybe */
SYMBOL ('3.14") '"LIT'
SYMBOL (' .Foo->bar"') 'BAD'

TIME ([option_out [,time [option_in]]]) - (ANSI)

Returns a string containing information about the local time. To get the time in a particular format,
an option_out can be specified. The default option_out isNormal. The meaning of the possible
options are:

[C]
(Civil) Returnsthe timein civil format. The return value might be "hh : mmxXx", where XX
are either am or pm. The hh part will be stripped of any leading zeros, and will be in the
range 1-12 inclusive. (ANSI)

[E]
(Elapsed) Returns the time elapsed in seconds since the internal stopwatch was started. The
result will not have any leading zeros or blanks. The output will be afloating point number
with six digits after the decimal point. (ANSI)

[H]
(Hours) Returns the number of complete hours that have passed since last midnight in the
form "hh". The output will have no leading zeros, and will be in the range 0-23. (ANSI)

[J]
(No idea) Returns the number of seconds of CPU time the currently running process has
currently used. The output will have no leading zeros, and will have 6 decimal places.
(Regina Extension)

[L]
(Long) Returns the exact time, down to the microsecond. Thisis called the long format. The
output might be "hh :mm: ss . mmmmmm". Be aware that most computers do not have a
clock of that accuracy, so the actual granularity you can expect, will be about afew
milliseconds. The hh, mm and ss parts will be identical to what is returned by the options H,
M and S respectively, except that each part will have leading zeros as indicated by the
format. (ANSI)

[M]
(Minutes) Returns the number of complete minutes since midnight, in aformat having no

110

leading spaces or zeros. (ANSI)

[N]
(Normal) The output format is"hh : mm: ss", and is padded with zeros if needed. The hh,
mm and ss will contain the hours, minutes and seconds, respectively. Each part will be
padded with leading zeros to make it double-digit. (ANSI)

[O]
(Offset) Returns the number of microseconds between UTC time and local time. This option
was added with the ANS| Standard. (ANSI)

[R]

(Reset) Returns the value of the internal stopwatch just like the E option, and using the same
format. In addition, it will reset the stopwatch to zero after its contents has been read.
(ANSI)

[s]
(Seconds) Returns the number of complete seconds since midnight, in aformat having no
leading spaces or zeros. (ANSI)

[T]
(time_t) Returns the current date/timein UNIX time_t format. time_t isthe number of
seconds since January 1% 1970. (Regina Extension)

Note that the timeis never rounded, only truncated. As shown in the examples below, the seconds
do not get rounded upwards, even though the decimal part implies that they are closer to 59 than to
58. The same applies for the minutes, which are closer to 33 than to 32, but istruncated to 32.
None of the formats will have leading or trailing spaces.

Assuming that the timeis exactly 14:32:58.987654 on March 30" 2002, the following will be true:

TIME ('C") '2:32pm'

TIME ('E") '0.01200" /* Maybe */

TIME ('H') '14"

TIME ('L'") '14:32:58.987654"

TIME ('M'") 1321

TIME ('N") '14:32:58"

TIME ('R'") '0.430221"' /* Maybe */
TIME('S"') '58"

TIME ('O'") 36000000000 /* East Coast Aus

TIME ('J)

*/
5.342000 /* Maybe */

If the time option is specified, the function provides for time conversions. The optional option_in

specifies the format in which time is supplied. The possible values for option_inare: CHLMNST.
The default value for option_inisN.
When atime is converted to format T, the returned value is the input time for the current date.

TIME('C','11:27:21")
TIME('N','11:27am',"'C")

'11:27am'
'11:27:00"

111

The time conversion capability of the TIME BIF was introduced with the ANSI standard.

TRACE ([setting]) - (ANSI)

Returns the current value of the trace setting. If the string setting is specified, it will be used as the
new setting for tracing, after the old value have be recorded for the return value. Note that the
setting is not an option, but may be any of the trace settings that can be specified to the clause
TRACE, except that the numeric variant is not allowed with TRACE () . In practice, this can be a
word, of which only the first letter counts, optionally preceded by a question mark.

TRACE () 'C' /* Maybe */
TRACE ('N') 'C'

‘ TRACE ('?') 'N'
TRANSLATE (string [, [tableout] [, [tablein] [,padchar]]]) - (ANSI)

Performs a trand ation on the charactersin string. As a specia case, if neither tablein nor tableout is
specified, it will tranglate string from lower case to upper case. Note that this operation may depend
on the language chosen, if your interpreter supports national character sets.

Two tranglation tables might be specified as the strings tablein and tableout. If one or both of the
tables are specified, each character in string that existsin tablein is trandated to the character in
tableout that occupies the same position as the character did in tablein. The tablein defaults to the
whole character set (all 256) in numeric sequence, while tableout defaults to an empty set.
Characters not in tablein are left unchanged.

If tableout islarger than tablein, the extraentries are ignored. If it is smaller than tableinit is
padded with padchar to the correct length. Padchar defaults to <space>.

If acharacter occurs more than once in tablein, only the first occurrence will matter.

TRANSLATE ('FooBar"') 'FOOBAR'

TRANSLATE ('FooBar', "ABFORabfor', 'abforABFOR' ' fOObAR'
)

TRANSLATE ('FooBar', 'abfor') ! !

TRANSLATE ('FooBar', 'abfor',, "#'") "HHEHEHET

TRIM(string) - (AREXX)

Removes trailing blanks from the string argument. A more portable option isto use the Trailing
option of the STRIP BIF.

TRIM(' abc ') ' abc'

112

TRUNC (number [,length]) - (ANSI)

Returns number truncated to the number of decimals specified by length. Length defaultsto 0, that
is return an whole number with no decimal part.

The decimal point will only be present if the is a non-empty decimal part, i.e. length is non-zero.
The number will always be returned in ssmple form, never exponential form, no matter what the
current settings of NUMERIC might be. If length specifies more decimals than number has, extra
zeros are appended. If length specifies less decimals than number has, the number is truncated. Note
that number is never rounded, except for the rounding that might take place during normalization.

TRUNC (12.34) 12"
TRUNC (12.99) 12"
TRUNC (12.34, 4) '12.3400"
TRUNC (12.3456, 2) '12.34"

UNAME ([option]) - (REGINA)

Returns details about the current platform. This function is basically a wrapper for the Unix
command; uname. Valid valuesfor option are:

A (All) The default. Returns a string with the all following option values. Equivalent to:
UNAME('S) UNAME('N') UNAME(R') UNAME('V') UNAME('M").

] (System) The name of the operating system.

o (Nodename) The name of the machine.

! (Release) The release of the operating system.

E:j (Version) The version of the operating system.

(Machine) The machine's hardware type.

Example running Linux Redhat 6.1 on 'boojum’, Athalon K7

UNAME ('S") Linux

UNAME ('N") boojum

UNAME ('R"') 2.2.12.-20

UNAME ('V"'") #1 Mon Sep 27 10:40:35 EDT 1999
UNAME ('M") 1686

Example running Windows NT 4.0 on 'VM_NT', Intel Pentium

113

WINNT
VM _NT

1586
UNIXERROR (errorno) - (REGINA)

This function returns the string associated with the er rno error number that errorno specifies.

When some UNIX interface function returns an error, it really is areference to an error message
which can be obtained through UNIXERROR.

Thisfunction isjust an interfaceto the st rerror () function call in UNIX, and the actual error
messages might differ with the operating system.

This function is now obsolete, instead you should use:

ERRORTEXT (100 + errorno)

UPPER (string [,start [,length [,pad]]]) - (AREXX/REGINA)

Trandates the substring of string that starts at start, and has the length length to upper case. Length
defaults to the rest of the string. Start must be a positive whole, while length can be any non-
negative whole number.

Itisnot an error for start to be larger than the length of string. If length is specified and the sum of
length and start minus 1 is greater that the length of string, then the result will be padded with
padcharsto the specified length. The default value for padchar is the <space> character.

If aspecific localeis set (viathe -l switch), then the string is set to the correct uppercase values
based on that locale.

Whilethis BIF isan AREXX BIF, it isnot necessary to have OPTIONSANSI_BIFS set to use it.
The optional arguments are Regina extensions.

UPPER ('One Fine Day') 'ONE FINE DAY'
UPPER('fred', 2) 'fRED'
UPPER('fred', 1, 1) 'Fred'
UPPER('fred',1, 10, '*') U IR D)% 2 3 5 2 %

USERID() - (REGINA)

Returns the name of the current user. A meaningful name will only be returned on those platforms
that support multiple users, otherwise an empty string is returned.

114

USERID () 'mark' /* Maybe */
VALUE (symbol [, [value], [pool]]) - (ANSIT)

This function expects as first parameter string symbol, which names an existing variable. The result
returned from the function is the value of that variable. If symbol does not name an existing
variable, the default value is returned, and the NOVALUE condition is not raised. If symbol isnot a
valid symbol name, and this function is used to access an normal REXX variable, an error occurs.
Be aware of the "double-expansion” effect, and quote the first parameter if necessary.

If the optional second parameter is specified, the variable will be set to that value, after the old
value has been extracted.

The optional parameter pool might be specified to select a particular pool of variablesto search for
symbol. The contents and format of pool is implementation dependent. The default isto searchin
the variables at the current procedural level in REXX. Which pools that are availableis
implementation dependent, but typically one can set variables in application programs or in the
operating system.

Notethat if VALUE () isused to access variable in pools outside the REXX interpreter, the
requirements to format (avalid symbol) will not in general hold. There may be other requirements
instead, depending on the implementation and the system. Depending on the validity of the name,
the value, or whether the variable can be set or read, the VALUE () function can give error
messages when accessing variables in pools other than the normal. Consult the implementation and
system specific documentation for more information.

If it isused to access compound variables inside the interpreter the tail part of this function can take
any expression, even expression that are not normally legal in REXX scripts source code.

The valid values of pool in Regina are one of ENVIRONMENT, SYSTEM,
OS2ENVIRONMENT, or pool can be a number representing the call level of the current
procedure, with the first level being 1. It istherefore possible to get and set the value of avariablein
ahigher call level procedure from the current one without the need to EXPOSE the variable. This
and the POOL I D() BIF which returns the current call level are Regina extensions.

By using this function, it is possible to perform an extralevel of interpretation of avariable.

VALUE ('FOO"') 'bar'
VALUE ('"FOO', "new') 'bar'
VALUE ('FOO") 'new'
VALUE ('USER', 'root', "SYSTEM"') 'guest' /* If SYSTEM exists */
VALUE ('USER',, "SYSTEM') 'root'

VERIFY (string, ref [, [option] [,start]]) - (ANSI)

With only the first two parameters, it will return the position of the first character in string that is
not also a character in the string ref. If all charactersin string are also in ref, it will return 0.

115

If option is specified, it can be one of:

[N]
(Nomatch) The result will be the position of the first character in string that does not exist in
ref, or zero if al exist inref. Thisisthe default option.

[M]
(Match) Reverses the search, and returns the position of the first character in string that
existsin ref. If none existsin ref, zero is returned.

If start (which must be a positive whole number) is specified, the search will start at that position in
string. The default value for startis 1.

VERIFY ('foobar', '"barfo') 'O
VERIFY ('foobar', 'barfo', 'M") 'l
VERIFY ('foobar', 'fob', 'N") '5!
VERIFY (' foobar', 'barf', 'N', 3) '3
VERIFY ('foobar', "barf', 'N', 4) 0"

WORD (string, wordno) - (ANSI)

Returns the blank delimited word number wordno from the string string. If wordno (which must be
a positive whole number) refers to a non-existing word, then anullstring is returned. The result will
be stripped of any blanks.

WORD ('To be or not to be', 3) 'or'
WORD ('To be or not to be',4) 'not'
WORD ('To be or not to be', 8) '

WORDINDEX (string, wordno) - (ANSI)

Returns the character position of the first character of blank delimited word number wordno in
string, which is interpreted as a string of blank delimited words. If number (which must be a
positive whole number) refers to aword that does not exist in string, then O is returned.

WORDINDEX ('To be or not to be', 3) LA
WORDINDEX ('To be or not to be',4) '10"
WORDINDEX ('To be or not to be', 8) 'O

WORDLENGTH (string, wordno) - (ANSI)
Returns the number of charactersin blank delimited word number number in string. If number

(which must be a positive whole number) refers to an non-existent word, then 0 isreturned. Trailing
or leading blanks do not count when calculating the length.

116

WORDLENGTH ('To be or not to be', 3) 27
WORDLENGTH ('To be or not to be',4) '3
WORDLENGTH ('To be or not to be',0) 'O

WORDPOS (phrase, string [,start]) - (ANSI)

Returns the word number in string which indicates at which phrase begins, provided that phraseis
asubphrase of string. If not, 0 is returned to indicate that the phrase was not found. A phrase differs
from a substring in one significant way; a phrase is a set of words, separated by any number of
blanks.

Forinstance, "is a"isasubphraseof "This is a phrase". Noticethe different amount of
whitespace between "1 s" and "a".

If start is specified, it setsthe word in string at which the search starts. The default value for start is
1.

WORDPOS ('or not', 'to be or not to be') '3
WORDPOS ('not to','to be or not to be') 4"
WORDPOS ('to be', 'to be or not to be') 'l
WORDPOS ('to be', 'to be or not to be', 3) 'o!

WORDS (string) - (ANSI)

Returns the number of blank delimited wordsin the string.

WORDS ('To be or not to be') '6!
WORDS ('"Hello world') 2!
WORDS ('") 'O

WRITECH (file, string) - (AREXX)

Writes the string argument to the given logical file. The returned value is the actual number of
characters written.

WRITECH ('outfile', 'Testing') 7!
WRITELN (file, string) - (AREXX)

Writes the string argument to the given logical file with a"newline" appended. The returned valueis
the actual number of characters written, including the“newline” character(s).

WRITELN ('outfile', 'Testing') '8' /* Unix */
WRITELN ('outfile', 'Testing"') '9' /* DOS */

117

XRANGE ([start] [,end]) - (ANSI)

Returns a string that consists of all the characters from start through end, inclusive. The default
value for character startis ' 00 ' x, while the default value for character end is ' ££ ' x. Without
any parameters, the whole character set in "alphabetic” order isreturned. Note that the actual
representation of the output from XRANGE () depends on the character set used by your computer.

If the value of start is larger than the value of end, the output will wrap around from ' £f'x to
'00 'x. If start or end is not a string containing exactly one character, an error is reported.

XRANGE ('A','J") 'ABCDEFGHIJ'

XRANGE ('FC'x) 'FCFDFEFF'x

XRANGE (, '05"'x) '000102030405"x
XRANGE ('FD'x, '04'x) 'FDFEFF0001020304'x

X2B (hexstring) - (ANSI)

Trandlate hexstring to a binary string. Each hexadecimal digitsin hexstring will be translated to four
binary digitsin the result. There will be no blanksin the result.

X2B(ll) L)

X2B('466f6f 426172") '0100011001101111011011110100001001100001
01110010"

X2B('46 o6f 6f'") '010001100110111101101111"

X2C (hexstring) - (ANST)

Returns the (packed) string representation of hexstring. The hexstring will be converted bytewise,
and blanks may optionally be inserted into the hexstring between pairs or hexadecimal digits, to
divide the number into groups and improve readability. All groups must have an even number of
hexadecimal digits, except the first group. If the first group has an odd number of hexadecimal
digits, it is padded with an extra leading zero before conversion.

X2C(ll) v
X2C ('466f6f 426172") 'FooBar'
X2C('46 of o6f") 'Foo'

X2D (hexstring [,length]) - (ANSI)

Returns awhole number that is the decimal representation of hexstring. If length is specified, then
hexstring is interpreted as a two's complement hexadecimal number consisting of the number
rightmost hexadecimal numeralsin hexstring. If hexstring is shorter than number, it is padded to the
left with <NUL> characters (that is: ' 00 ' x).

If length is not specified, hexstring will always be interpreted as an unsigned number. Elsg, it is
interpreted as an signed number, and the leftmost bit in hexstring decides the sign.

118

X2D('03 24") '792"
X2D('0310") '784"
X2D('ffff") '65535"
X2D('ffff',5) '65535"
X2D('ffff',4) T=1"
X2D('££80',3) '-128"
X2D('12345"',3) '837"

119

4.3 Implementation specific documentation for Regina

4.3.1 Deviations from the Standard

¢ For those built-in functions where the last parameter can be omitted, Regina allows the last
commato be specified, even when the last parameter itself has been omitted.

¢ The error messages are dightly redefined in two ways. Firstly, some of the have a slightly more
definite text, and secondly, some new error messages have been defined.

¢+ The environments available are described in chapter [not yet written].
¢ Parameter calling

¢ Stream /O

¢ Conditions

¢ National character sets

¢ Blanks

¢ Stacks have the following extrafunctionality: DROPBUF (), DESBUF () and MAKEBUF () and
BUFTYPE ().

¢ Random()
¢ Sourcdine
¢ Time

¢ Character sets
4.3.2 Interpreter Internal Debugging Functions

ALLOCATED ([option])

Returns the amount of dynamic storage allocated, measured in bytes. Thisisthe memory allocated
by themalloc () cal, and does not concern stack space or static variables.

As parameter it may take an option, which is one of the single characters:
[A]

It will return astring that is the number of bytes of dynamic memory currently allocated by
the interpreter.

120

[C]
Returns a number that is the number of bytes of dynamic memory that is currently in use
(i.e. not leaked).
[L]
Returns the number of bytes of dynamic memory that is supposed to have been leaked.
[s]
Thisisthe default value if you do not specify an option. Returns a string that is nicely
formatted and contains all the other three options, with labels. The format of thisstring is:

"Memory: Allocated=XXX, Current=YYY, Leaked=ZZzZZ".

This function will only be availableif the interpreter was compiled with the TRACEMEM
preprocessor macro defined.

DUMPTREE ()

Prints out the internal parse tree for the REXX program currently being executed. This output is not
very interesting unless you have good knowledge of the interpreter'sinternal structures.

DUMPVARS ()

Thisroutine dumps alist of all the variables currently defined. It aso givesalot of information
which is rather uninteresting for most users.

LISTLEAKED ()

List out all memory that has leaked from the interpreter. As areturn value, the total memory that has
been listed is returned. There are several option to this function:

o Do not list anything, just calculate the memory.

A List all memory allocations currently in use, not only that which has been marked as leaked.
- Only list the memory that has been marked as leaked. Thisis the default option.
TRACEBACK ()

Prints out atraceback. Thisis the same routine which is called when the interpreter encounters an
error. Nice for debugging, but not really useful for any other purposes.

121

4.3.3 REXX VMS Interface Functions

FS$CVSI

FSCVTIME

F$CVUI

FSDIRECTORY

FSELEMENT

FSEXTRACT

F$FAO

FSFILE ATTRIBUTES

FSGETDVI

F$SGETJPI

FSGETQUI

FSGETSYI

FSIDENTIFIER

FSINTEGER

F$SLENGTH

FSLOCATE

122

FSLOGICAL

FSMESSAGE

F$MODE

FSPARSE

FSPID

FSPRIVILEGE

F$PROCESS

F$SEARCH

F$SSETPRV

F$STRING

FSTIME

FSTRNLNM

FSTYPE

FSUSER

123

5 Z0OC REXX Extensions

5.1 ZOC-REXX Commands/Functions Overview

The help text below lists the ZOC extensions to the REXX scripting language. REXX initself isa
full featured programming language with native programming elements like variables, loops, €tc. In
the examples bel ow, the native language elements are show in uppercase like CALL, SAY, etc. and
you will find an overview here. ZOC then offers terminal emulation specific extensionsto this
language.

The names of ZOC extensions aways begin with Zoc. They are like built in procedures or functions
and for many of them it is necessary to provide one or more arguments.

Generally there are two types of ZOC-commands:
Commands that return a value (these are also called Functions) and commands that don't.

ZOC-commands that do not return avalue are called with the procedure call syntax:
CALL <cmd-name> <arguments>

Functions are called with the function call syntax: <result-var>= <cmd-name>(<arguments>)

However, it is possible to call functions (commands which return values) with the procedure style
call if you are not interested in the result code; in other words,

CALL ZocDownload "ZMODEM", "\FILES\DOWNLOAD"
and

error= ZocDownload ("ZMODEM", "\FILES\DOWNLOAD")
are both legal.

In the list below, functions are indicated by the use of brackets.

5.2 ZocAsk([<title> [, <preset>]])

Show atext input window and read text from user. If the second argument (preset) is provided, the
entry field will be preset with this value.

Example:

124

answer= ZocAsk ("What i1s the best terminal?", "ZOC")
IF answer="ZOC" THEN ...

See also: ZocDiaog, ZocAskPassword, ZocAskFilename, ZocAskFoldername, ZocRequest,
ZocRequestList

5.3 ZocAskPassword([<title>])

Same as the ZocAsk command, except that it isintended to enter passwords, i.e. the entry field
shows typed characters as dots and you cannot preset the field with a default value.

Example:
pw= ZocAskPassword ("What's your password?")
IF pw=="secret" THEN ...

5.4 ZocAskFilename(<title> [, <preselected file>])

Display afile selection window and return the filename. If the file dialog is cancelled, the string
##CANCEL## isreturned.

Example:
file= ZocAskFilename ("Select file to upload", "*.ZIP")
IF file\="##CANCEL##" THEN DO
CALL ZocUpload "ZMODEM", file
END

See also: ZocAsk, ZocDiaog, ZocFilename, ZocAskFilenames, ZocAskFoldername, ZocListFiles

5.5 ZocAskFilenames(<title> [, <preselected file> [,

<delimiter>]])

Display awindow that allows selection of multiple files and return the filenames separated by a
space character. If thefile dialog is cancelled, the string ##CANCEL# # is returned.

The items can then be extracted from the list by using the ZocString ("WORD", idx)
function. If you expect filenames to contain space characters, you need to supply adifferent
delimiter and usethe ZocString ("PART", idx, "|") functioninstead.

Example:

125

files= ZocAskFilenames ("Select file to process", "*.ZIP",

"l")

howmany= ZocString ("PARTCOUNT", files, "|")
DO i=1 TO howmany
name= ZocString ("PART", files, i, "|")
SAY i||". NAME= "| |name
END

See also: ZocFilename, ZocAskFilename, ZocA skFoldername, ZocListFiles, ZocMessageBox,
ZocRequest, ZocRequestList

5.6 ZocAskFoldername(<title> [, <preselected folder>])

Display afolder selection dialog and return the name of the selected folder. If the dialogis
cancelled, the string # # CANCEL## iS returned.

Example:
folder= ZocAskFoldername ("Select Folder")
IF folder\="##CANCEL##" THEN DO
SAY folder
END

See also: ZocFilename, ZocAskFilename, ZocA skFilenames

5.7 ZocBeep [<n>]

Beep n times.

Example:
CALL ZocBeep 2

5.8 ZocClipboard <subcommand> [, <writestring>]

Performs a clipboard function for one of the following subcommands:

READ Returns the current content of the clipboard
WRITE Writes the string from the 2nd parameter to the clipboard

126

Example:
clip= ZocClipboard ("READ")
newclip= clip]| |ZocCtrlString (""M"J Zoc was here!")
CALL ZocClipboard "WRITE", newclip)

5.9 ZocClearScreen

Clears the screen and resets the emulation to itsinitial state.

Example:
CALL ZocClearScreen

5.10 ZocCommand <subcommand>
Performs a function for one of the following subcommands:

CLS Clear screen.

CLEARSCROLLBACK Clear scrollback buffer.

CANCELCONNECT Cancel a connect request that is currently in progress.

LOADGLOBALCOLORS Reload the global color table from file (default file name or 2nd
parameter).

SAVEPROGRAMSETTINGS Permanently stores changes, which were made viathe
ZocSetProgramOption command.

SAVESESSIONPROFILE Stores changes made via the ZocSetSessionOption to the current

session profile file (see a'so ZocSaveSessionProfile)
SENDBREAK Sends a modem break signal (Serial/Modem connections only).
Example:

CALL ZocCommand "SAVESESSIONPROFILE"
CALL ZocCommand "SETMARKEDAREA","BLOCK",0,0,1,79

See also: ZocMenuEvent

5.11 ZocConnect [<address>]

Connect to a host via telnet, modem, ssh etc. or read the address to connect to from the user if the
parameter is omitted.

127

The connection method will be the one that is active in the current session profile. Alternately a
connection method can be selected in the script via ZocSetDevice.

If the address is an SSH host, you can pass the username and password to the host in the form
CALL ZocConnect "user:pass@ssh.somedomain.com"

Example:
CALL ZocSetDevice "Secure Shell"
CALL ZocConnect "harry:alohomora@l192.168.1.1:10022"

Example:
CALL ZocSetDevice "Telnet"
CALL ZocConnect "server.hogwarts.edu"

Call ZocTimeout 20

x= ZocWait ("Login:")

IF x=640 THEN SIGNAL waitfailed /* login prompt not received
*/

CALL ZocSend "harry™M"

x= ZocWait ("Password:")

IF x=640 THEN SIGNAL waitfailed /* password prompt not
received */

CALL ZocSend "secret”™M"

/* At this point we are logged in */
waitfailed:

EXIT

See also: ZocConnectHostdirEntry, ZocSetDevice, ZocDisconnect, ZocGetlnfo("ONLINE")

5.12 ZocConnectHostdirEntry <name>

Makes a connection based on the details of an entry in the ZOC host directory (the host directory
entry should not have aLogin REXX file assigned to it).

Example:
CALL ZocConnectHostdirEntry "Webhost 03"

See also: ZocConnect, ZocDisconnect, ZocGetInfo("ONLINE")

128

5.13 ZocCtrIString(<text>)

This function converts a string containing control codes into a string where the control codes are
converted into their respective values.

Example:
crlf= ZocCtrlString (""M"J") /* results in two byte string

hex"0ODOA" */

See also: ZocCtrlString

5.14 ZocDdeClient [(<channel>,] <subcommand> [,
<parameters>]

This function can be used to interact with other software via DDE (dynamic data exchange). For
example MS-Excel supports DDE and the DDE client can be used to retrieve data from Excel
worksheets.

Possible subcommands are:

INIT Initializes a DDE connection. INIT isfollowed by two parameters:
DDE server-name and topic.
INIT will return either EXMPL (#ERROR##) or a channel number for
use with subsequent commands.

EXECUTE Performs a server-function. EXECUTE is followed by one parameter:
execution-command (e.g. an Excel command).

REQUEST Requests data from the server. REQUEST is followed by one
parameter: data-address (e.g. an Excel cell or range).

CLOSE Closes an existing dde-channel.

Example:

129

chan= ZocDdeClient ("INIT", "EXCEL", "Tablel")
SAY "INIT: channel= "] |chan

IF chan\="##ERROR##" THEN DO
data= ZocDdeClient (chan, "REQUEST", "R1C1")
SAY "REQUEST-DATA: " | |data

CALL ZocDdeClient chan, "CLOSE"
END
EXIT

5.15 ZocDelay [<sec>]

Wait a given time in seconds or wait 0.2 seconds if the parameter is omitted.

Example:
CALL ZocDelay 4.8

5.16 ZocDeviceControl <string>

This rather arcane command performs an operation that is specific to the current connection type
(e.g. to return the signal states of the COM during a Serial/Direct type connection).

Possible control commands for each communi cation method are described in ZOC Devices.

Example:
state= ZocDeviceControl ("GETRS232SIGNALS")

See also: ZocSetDevice

5.17 ZocDialog <subcommand> [, <parameter>]
Performs a dialog related function:

LOAD Shows a user defined dialog window. The 2nd parameter is a
combination of the name of the dialog together with the name of the file
containing the dialog template (the file name is either afully qualified
file name or the name of afile located in the same folder as the
currently running script file).

SHOW Shows a user defined dialog window. There can be an optional 2nd
parameter as described above for the LOAD command. In this case, the

130

GET

SET

SHOW command will include the LOAD operation.

Returns the value of one of the dialog elements (e.g. the text which
the user had typed into an entry field or the state of a checkbox or

radiobutton).

Set the value of one of the dialog elements, e.g. the text which the will
initially be shown in an entry field or the description of an item. With a
checkbox or radiobutton, the values #ON## or ##OFF## will also

changetheinitial state.

For details about how dialog templates are built, see ZocDia og Templates.

Example:

dlgrc= ZocDialog ("SHOW",

IF dlgrc=="##0OK##" THEN DO

name= ZocDialog ("GET",

SAY
SAY
SAY
SAY
END
EXIT

Example:

dlgrc= ZocDialog ("LOAD",
SAY "Dialog load result:

CALL
CALL
CALL
CALL
CALL

"Hallo " | |name

ZocDialog ("GET",
ZocDialog ("GET",
ZzocDialog ("GET",

ZocDialog
ZocDialog
ZocDialog
ZocDialog
ZocDialog

"SET",
"SET",
"SET",
"SET",
"SET",

"CBl ")

"Pl")
"PZH)

"ED1",
"CB1",
"DD1",
"DD2",
"DD2",

dlgrc= ZocDialog ("SHOW")
IF dlgrc=="##0OK##" THEN DO
/* process result */

END

"MAIN@test.dlg")

"EDl ")

"MAIN@test.dlg")
"] |dlgrc

"foobar"

"H#HONHH"

"Red"

"Apple |Orange|Grape"
"Orange"

See also: ZocAsk, ZocAskPassword, ZocMessageBox, ZocRequest, ZocRequestList

5.18 ZocDisconnect

Disconnects the current connection. Same as ZocCommand "DISCONNECT".

Example:

CALL ZocDisconnect

See also: ZocConnect, ZocConnectHostdirEntry

131

5.19 ZocDownload(<protocol>[:<options>], <file or dir>)
Download one or more files using afile transfer protocol.

The first parameter is the name of afile transfer protocol (aslisted in ZOC's Options— Session
Profile—~File Transfer diaog).

The exact nature of the second parameter varies depending on the transfer type (see note below).

For adiscussion of the protocol options, please see the ZocUpload command further down in this
list.

Depending on success or failure, the function returnsthe string ##0K+# # or # #ERROR# #

Example:
CALL ZocSetSessionOption "TransferAutoStart=no"
ret= ZocDownload ("ZMODEM", "C:\ZOC\INFILES")
IF ret=="##ERROR##" THEN DO
CALL ZocBeep 5
SAY "Download failed."
END

Note: The second parameter varies depending on the file transfer type:
XMODEM: Local destination filename.

YMODEM: Loca destination folder.

ZMODEM: Local destination folder.

SCP: Remote sourcefile, e.g. /var/log/somefile. txt.

Note: If you have Auto Transfer enabled in the Options— Session Profile—File Transfer options,
and if the remote host starts the transfer before ZOC-REX X processes the ZocDownload command,
then two download windows will come up. So you need to make sure you are issuing
ZocDownload() before the host starts or make sure that Auto Transfer option is disabled.

Note: If the file has aname that is set for download to the alternate path (in Options— Session
Profile—File Handling), the directory parameter isignored.

See also: ZocUpload

5.20 ZocDoString(<commandstring>)

Pass an Action Code to ZOC for processing.
Y ou can obtain such strings by temporarily mapping something to a key via Options— K eyboard
Mapping Profiles and then copying the result from the keyboard profile. This can be done by editing

the corresponding keyboard profile file (e.g. Standard.zky), where you will find an action in the
form "X XXX X=.... and which then you can use as argument for the ZocDoString call.

132

Example:
CALL ZocDoString "“EXEC=notepad.exe"

See also: ZocMenuEvent, ZocShell, ZocSendEmulationK ey

5.21 ZocEventSemaphore(<subcommand>[, <signal-
id>])

This function can be used to synchronize and exchange signals between multiple REXX scripts (it
has no use within asingle script). To facilitate this, the function offers a signaling mechanism with
16 signal dots for which other scripts can wait.

Possible <subcommands> are:

RESET Sets the state of this semaphore to not-fired and clears the signal
counter.

FIRE Sets state to signaled, increases the counter and releases all waiting
scripts.

TEST Returns the number of received signals (i.e. FIRE commands) since the
last reset.

WAIT Wait for asignal. If the semaphore was aready fired, the command will

return immediately, resetting the signal (see above) returning the
number of signals which happened since the last reset (max 255).

If the semaphore has not yet been signaled (fired), the function will
block and wait for asignal or it will return after atimeout (set via
ZocZimeout returning a code of 640 (the behavior of thisfunctionis
very similar ZocWait.

<signal-id> An optional number [1..15] to access/use a different semaphore (default
1S 0).

Example:
Call ZocEventSemaphore "RESET"
/* do some work */

/* wait until another script fires the signal */
ret= ZocEventSemaphore ("WAIT")
IF ret=640 THEN DO
/* signal was received */
END

See also: ZocTimeout, ZocWait, ZocGlobal Store

133

5.22 ZocFilename(<command>[, <options>])
This group of commands offers filename operations.

COMBINE <path>[, <path2>], <file>

EXISTS <filename>

GETFILE <filename>
GETPATH <filename>
GETSIZE <filename>
GETVOLUMELABEL <driveletter>

Combines filename partsto afull filename. If <file>is
already afully qualified name, <path> and optional
<path2> are ignored.

Returns ##Y ES## bzw. ##NO##, depending on the
existence

Returns the filename part of afull file descriptor.
Returns the directory part of afull file descriptor.
Returns the size of afile.

Returns the drive label for adrive, eg. "C: " (Windows
only).

ISFOLDER <pathname>

RESOLVE <string>

Returns ##Y ESH# or ##NO##, depending on if the given
path refers to an existing folder.

Resolves one of ZOC's special file/path placeholderslike
%ZOCFILESY% or %USERHOM E%.

WRITEACCESS <filename>

Example:

Returns ##Y ESH## or ##NO##, depending on if afile can
be written.

workdir= ZocGetInfo ("WORKDIR")
datadir= ZocFilename ("RESOLVE", "$ZOCFILESS")

fullfile= ZocAskFilename ("Choose File", workdir)
file= ZocFilename ("GETFILE", fullfile)
path= ZocFilename ("GETPATH", fullfile)

134

file2= filel||".tmp"
target= ZocFilename ("COMBINE", path, file2)

IF ZocFilename ("EXISTS", target)=="##YES##" THEN DO
CALL ZocMessageBox "Can't overwrite file "||file2
EXIT

END

5.23 ZocFileCopy(<source filename>, <destination>)

Copy afileto anew destination which can either be afile name or folder name.
Wildcards like * or ? are not supported in the source file (see ZocListFiles).

Example:
CALL ZocFileCopy "Z:\SALES.DAT", "Z:\SALES.BAK"

ok= ZocFileCopy ("C:\DATA\USERFILE.TMP", "C:\BACKUP")
IF ok="##OK##" THEN EXIT

See also: ZocFilename, ZocFileDelete, ZocFileRename, ZocListFiles, ZocShell

5.24 ZocFileDelete(<filename>)

Deletes afile. The filename may not contain wildcards (* or 2, see ZocListFiles).
The function returns ##O0K## or ##ERROR# #

Example:
ok= ZocFileDelete ("C:\DATA\USERFILE.TMP")
IF ok="##OK##" THEN EXIT

filename= ZocFilename ("COMBINE", "$ZOCFILES%", "rexx.log")
CALL ZocFileDelete filename

See also: ZocFilename, ZocFileCopy, ZocFileRename, ZocL istFiles, ZocShell

5.25 ZocFileRename(<oldname>, <newname>)

Renames afile. The renamed file will always remain in the same folder asthe original file.
Filenames may not contain wildcards * or ?, see ZocL istFiles.

135

The function returns ##0K## or ##ERROR# #

Example:

ret= ZocFileRename ("C:\DATA\USERFILE.TMP",

"C:\DATA\USERFILE.TXT")

See also: ZocFilename, ZocFileCopy, ZocFileDelete, ZocListFiles, ZocShell

5.26 ZocGetHostEntry(<name>, <key>)

Retrieves the key-value pair for aZOC host directory entry (see ZocSetHostEntry or
ZocSetSessionOption commands for more information about such key-value pairs).

Example:

pair= ZocGetHostEntry ("Z0C Support BBS", "connectto")
PARSE VALUE pair WITH key'="'val'"'

CALL ZocConnect wval

5.27 ZocGetinfo(<what>)

Depending on the parameter, this function can return various bits of information about the current

environment and ZOC session.

COMPUTERNAME
CONNECTEDTO

CONNECTEDTORAW

CONNECTEDTOIP

CURRENTDEVICE

CURRENTEMULATION
CURRENTLOGFILENAME
CURRENTSCRIPTNAME

The name of the computer on which ZOC is running.

The name of host directory entry, host name, ip, or
phone number to which ZOC is connected.

The actual value of the "connect to" field that was used
to initiate the current connection, e.g.
linux.hogwarts.com.

For connections that are |P based, the actual |P address
of the remote host (even if the connection was made by
host name).

The name of the currently active communication
method, e.g. Telnet.

The name of the currently active emulation, e.g. Xterm.
Current file name for logging (without path).

Filename and path of the main script which is currently
executed (thiswill not return sub-scripts which are
executed via CALL from inside another script).

136

CURRENTSESSIONPROFILENAME Thefilename and full path of the current session profile.

CURSOR-X
CURSOR-Y
DESKTOPSIZE

DOMAINNAME

The x-position of the cursor (starting with zero).
The y-position of the cursor (starting with zero).

The net size of the Windows/macOS desktop in pixels
(excluding taskbar, dock, etc.)

The name of this computer's Windows domain or
workgroup.

DOWNLOADDIR
EXEDIR

LASTDOWNLOADEDFILE

MARKEDAREA

ONLINE

OSYS

OWNIP

OWNIPS

PROCESSID
SCREENHEIGHT
SCREENWIDTH
TRANSFER

TN3270FIELDATTR Xy

The default drive and directory for downloads.

The drive and directory in which ZOC has been
installed.

The name and path of the last downloaded file.

The start/end position and mode of the marked areain
theform x1,y1,x2,y2,mode (positionsare zero
based) or the string # #NONE # #

Information if ZOC is currently connected to a host:
#HYESH##, ##NO##, # #UNKNOWN# #

Returns a string which indicates the operating system
and OS version under which ZOC isrunning, e.g.
Windows XP.

Returns the computer& apos.s |PV4 address in the local
LAN or WLAN.

Returns alist of al 1Pv4 addresses assigned to the
current computer.

ZOC's system processid.

Height (number of lines) of the terminal.

Width (number of characters) of the terminal.

Information if afile transfer is currently active:
#HYESH#, ##NOH#

The TN3270 field attributes and colors of a given screen
location (x,y are decimal zero based numbers). The reslt
isintheform attrbits foreground
background attrstrings... (numericvalues
are hexadecimal).

UPLOADDIR The default drive and directory for uploads.

USERNAME The login-name of the currently logged in user.

USERID (same as USERNAME)

VERSION The current ZOC version, e.qg. 6.24

VERSIONEX The current ZOC version including beta version (if any),
eg. 6.24b

WINPOS A string indicating the position and size of the program

137

window on the screen.

WORKDIR ZOC'sworking directory (containing host directory,
options, etc).
Example:
ver= ZocGetInfo ("VERSIONEX")
SAY "zOC "||ver

CALL ZocTimeout 30

timeout= ZocWait ("Password")

IF timeout=640 | ZocGetInfo ("ONLINE")<>"##YES##" THEN DO
SIGNAL PANIC /* disconnected! */

END

5.28 ZocGetProgramOption(<key>)

Retrieves the key-value pair for aZOC program option (see ZocGetSessionOption and
ZocSetProgramOption for more info about key-value pairs).

Example:
pair= ZocGetProgramOption ("DisconEndProg")
PARSE VALUE pair WITH key"="value

138

IF value=="yes" THEN DO
SAY "Z0C will terminate after this session."
END

See also: ZocGetSessionOption, ZocSetSessionOption, ZocSetProgramOption

5.29 ZocGetScreen(<x>,<y>,<len>) or
ZocGetScreen(“<alias>")

The ZocGetScreen() function can be used to return characters that are currently displayed in ZOC's
terminal window. It returns <len> characters beginning from position <x>,<y> (zero based). If it
reaches the right margin, it continues on the next line without adding aCR or LF.

There are also afew short versions for common combinations of x,y and len:

ALL: The whole screen (i.e. from position 0/0 with length SCREENWIDTH* SCREENHEIGHT)
LEFTOFCURSOR: The text left of the cursor (position= 0/CURSOR-Y, length= CURSOR-X)
CURRENTLINE: The whole line where the cursor is (position= 0/CURSOR-Y, length=
SCREENWIDTH

Example:

curline= ZocGetScreen ("LEFTOFCURSOR")

SAY " /\M"

SAY "The text before the cursor was: "||curline
Example:

width= ZocGetInfo ("SCREENWIDTH")
posy= ZocGetInfo ("CURSOR-Y")
screenpart= ZocGetScreen (0,0, posy*width)
IF POS("#", screenline)=0 THEN DO
SAY "There is no hash character on screen above the
cursor."
END

Example:
cx= ZocGetInfo ("SCREENWIDTH")
cy= ZocGetInfo ("SCREENHEIGHT")

-- loop through all lines on screen
DO y= 0 TO cy-1

line= ZocGetScreen(0,y, cx)

-- check each line for some text

IF POS("**SUCCESS**", line)>=1 THEN DO

Call ZocMessageBox "Found **SUCCESS* on screen in line

"Iy

END
END

139

Seealso: ZocGetlnfo("CURSOR-X"), ZocGetlnfo("CURSOR-Y"),
ZocGetInfo("SCREENWIDTH"), ZocGetInfo("SCREENHEIGHT")

5.30 ZocGetSessionOption(<key>)

Retrieves the key-value pair for aZOC option from the session profile (see the
ZocSetSessionOption command for more details).

Example:
pair= ZocGetSessionOption ("Beep")
PARSE VALUE pair WITH key"="value
IF value=="no" THEN DO
SAY "The beep option is turned off."

END
Example:
pair= ZocGetSessionOption ("EngString")
PARSE VALUE pair WITH key'="'value'™"™'
SAY "The configured answer to eng is: "||value

See also: ZocSetSessionOption, ZocGetProgramOption, ZocSetProgramOption

5.31 ZocGlobalStore(<operation>, [<options>])

This group of functions allows permanent storage of valuesin afile based data pool. This can be
used to remember values across various script runs (the operations are atomic and they are protected
against concurrent access).

Possible operations are:

SELECT <name> Select adifferent global pool. With the exception of the name
VOLATILE, the name will be used to create afile name in the form
<name>Global.ini inthe user datafolder or it can point to a
different location, e.g. C: \data\mypool (which will then aso
becomemypoolGlobal.ini).
Thename VOLATILE refersto aspecial pool that isonly held in
memory and which is shared across all sessions. It will loseits values
when the last session is closed.

INIT Clear al valuesin the global space.
GET <name> Returns the value with the given name.

PUT <name>, <value> Stores avalue in the storage pool under a given name.
SET <name>, <value> SameasPUT

140

Example:
CALL ZocGlobalStore "SELECT", "MyValStore"
x= ZocGlobalStore ("GET", "LASTX")

CALL ZocGlobalStore "SET", "LASTX", x

5.32 ZocKeyboard(<command> [, <timeout>])

This function allows a REXX script to read keystrokes from the terminal window. It supports the
subcommands LOCK, UNLOCK and GETNEXTKEY

LOCK Lock the keyboard and prevent user input.
UNLOCK Unlock the keyboard from a previous LOCK stete.

GETNEXTKEY Wait for the next keystroke and return it. You can also specify atimeout in
seconds and if successful, GETNEXTKEY will return astring in the form
char|scancode|shift|ctrl|alt.

char: two byte hex number representing the ascii code of the key.
scancode: The physical scan code from the keyboard (the scan code can
be used to identify functional keys such home, del, f1, f2, etc.).
shift,ctrl andalt areeither 0 or 1 indicating if they were held down
when the primary key was pressed.

The example below shows how the subcommands are used and how the possible result can be split
into its parts and displayed in auser friendly form.

Example:
CALL ZocKeyboard "UNLOCK"
ret= ZocKeyboard ("GETNEXTKEY", 30)
PARSE VALUE ret WITH hexkey"|"scan"|"shift"|"ctrl"|"alt
key= X2C (hexkey)
SAY "You pressed hex/key: "hexkey"/"key
SAY "Scan code: "scan
SAY "Shift/Ctrl/Alt states: "shift"/"ctrl"/"alt

5.33 ZoclLastLine()

Thisisafunction and returns the last line of text that was received from the point the last
ZocWait/ZocWaitMux/ZocWaitLine command was issued to the point when it successfully returned

141

Example:
CALL ZocSend "ATZ"M"

timeout= ZocWaitMux ("OK", "ERROR")

IF timeout\=640 & THEN DO
IF ZocLastLine ()="OK" THEN SIGNAL error
CALL ZocConnect "555 3456"

END

Note: In many cases, using ZocReceiveBuf instead will be the more flexible choice.
ZocGetScreen("LEFTOFLINE") often also provides asimilar result.

Note: Also see the examplesin the description for ZocWaitLine

5.34 ZoclListFiles(<path\mask> [, <separator>])
The ZocListFiles function will retrieve alist of filenames for a directory.

The first parameter is a directory name and wildcard mask (e.g. "c:\data*.*").

The function will return a string which contains the number of files and the file names separated by
space characters, e.g. "3 download.zip sales.txt foobar.fil"

This allows easy access to the parts of the string via REXX's WORD function (see example below).
If you expect filenames to contain space characters you can provide a different list separator as the
second parameter. E.g. a separator of "[* will return the string "3 download.zip|
sales.txt|foobar.pdf".Inthiscaseyoucanuse ZocString ("PART", purelist,
i, "|"™) toextract thefile names.

Note: The number of filenames returned is limited to 128 and the maximum length of the total
string returned is 4096.

Example:
files= ZocListFiles ("C:\TEMP*")

howmany= WORD (files, 1)
SAY "Number of Files:" howmany

purelist= SUBSTR(files, LENGTH (howmany) +2)
DO i=1 TO howmany

SAY "File " i "=" WORD (purelist, 1i)
END

See also: ZocFilename, ZocGetFilename, ZocGetFilenames, ZocGetFolderName, ZocString

142

5.35 ZocLoadKeyboardProfile [<zkyfile>]

Loads and activates a keyboard profile (*.zky file).

Example:
CALL ZocLoadKeyboardProfile "Alternate.zky"

5.36 ZocLoadSessionProfile <optsfile>

L oads and activates a session profile file (*.zoc).

Example:
CALL ZocLoadSessionProfile "Zoc4Linux.zoc"

5.37 ZocLoadTranslationProfile [<ztrfile>]

Loads and activates a character transdation profile (*.ztr).

Example:
CALL ZocLoadTranslationProfile "7/bitgerman.ztr"

5.38 ZocMath(<function>, <arg>[, <arg2>])

ZocMath cal culates the math function based on the arguments. Vdid functions are sin, cos, tan,
asin, acos, sgrt, todeg, torad, bitand, bitor, bitxor.

Example:
angle = 270
anglerad = ZocMath ("torad", angle)
sinresult = ZocMath("sin", anglerad)
lowbits = ZocMath ("bitand", 175, 15)
hibits = ZocMath ("bitand", X2D(A5), X2D(FO0))

5.39 ZocMenuEvent <menu text> [, <file>]

Perform a function from the ZOC menu. The <menu text> is atext that matches an entry in the
Z0OC menu. The <file> parameter is an optional file name which some menu events accept rather
than prompting the user for afile.

143

Example:
CALL ZocMenuEvent "Paste (no line breaks)"
CALL ZocMenuEvent "Edit REXX Script", "test.zrx"

5.40 ZocMessageBox(<text> [, <mode>])
Display a message box with the given text (a”*M in the text creates a line break).

Normally an informational message window with an OK button (mode 0) is shown. Mode 1 shows
an error message with an OK button. Mode 2 shows a message with aY ES and NO button.

The return value is either ##OK## or ##Y ESH# or #NO#H#.
Example:
CALL ZocMessageBox "Connect Failed!"™, 1
ret= ZocMessageBox ("The operation failed"M"MTry again?", 2)

IF ret=="##YES##" THEN DO

END

See also: ZocAsk, ZocAskPassword, ZocRequest, ZocRequestList

5.41 ZocNotify <text> [, <duration>]

Display asmall floating message at the center of the window. If duration is given, controls the time
in milliseconds which the window will stay on screen.

Example:
CALL ZocNotify "Hello World!", 1500

5.42 ZocPing (<ip-or-hostname>, <timeout>]

Sends an ICMP (ping) request to the given host and returns when it receives either areply or when
the timeout (in ms) expires. The command either returns the string ##ERROR## or the roundtrip
time in milliseconds.

Example:

144

pingrc= ZocPing ("www.emtec.com", 2500)
IF pingrc\="##ERROR##" THEN SAY "Received reply within "||
pingrc||" ms"

5.43 ZocPlaySound <file>

Playsa WAV file.

Example:
CALL ZocPlaySound "ka-ching.wav"

5.44 ZocReceiveBuf(<buffer size>)

This function makes ZOC collect parts of a session in amemory buffer and returns the previous
buffer's contents (if any) as a string.

Initially the buffer has a size of zero, which means that no data is collected. To start data collection
you need to call the function with a parameter indicating the size of the next receive buffer. After
that, incoming data is added to the buffer until either the buffer isfull or until the function is called
again. Calling ZocReceiveBuf again will retrieve the buffer's content, reset the content and set a
new size for the buffer.

A sequence of callsto ZocReceiveBuf in order to retrieve text from a database will look like this:

Example:
/* make a receive buffer of 256 bytes */
CALL ZocTimeout 60

CALL ZocReceiveBuf 256
CALL ZocSend "read abstract™M"
CALL ZocWait "Command>"

/* get the result from the read command and */
/* make a larger buffer to hold the result of */
/* a subsequent command. */

abst= ZocReceiveBuf (4096)

CALL ZocSend "read contents”™M"

CALL ZocWait "Command>"

145

http://www.emtec.com/

/* get the content and discontinue buffering */
cont= ZocReceiveBuf (0)

/* At this point, both variables (abst and cont) will start
with the word "read" and end with the character ">",
containing

whatever data was received between the command and next
prompt. */

Example:
/* read the remote environment variables and extract the

TERM= value */

Call ZocReceiveBuf 2048
Call ZocSend "set”™M"

/* you will need to wait for the your own prompt here */
Call ZocWait "PROMPT: ~username$"
data= ZocReceiveBuf (0)

/* google for "REXX PARSE COMMAND" to get more details
on the PARSE command which is used to extract the data */
PARSE VALUE data WITH ."TERM="term

SAY "The remote term setting is " term

Note: If executed via DDE, the ZocReceiveBuf command must be sent as a DdeRequest (rather
than DdeExecute)

Note: See also ZocWaitForSeq and ZocString("LINE" ...)

5.45 ZocRegistry(<subcommand>[, <options>])

This group of commands allows access to the Windows registry.

OPEN <basekey>, <name> Returns a <hkey> handle for accessto a part of the registry.
Basekey can be HKEY CURRENT USEROf
HKEY LOCAL MACHINE . Thevalue can be used to
read/write this part of the registry.

WRITE <hkey>, <value>, <data> Writes <data> to the part of the registry which is associated
with <hkey>. If <data> is provided intheform "DWORD:n"
the decimal value n will be stored asREG_DWORD. If
<data> is provided intheform "BINARY : xxxxxx. .. ",
then xxxxxx... is converted from a hex string to bytes and will
be stored as REG_BINARY. Otherwise <data> will be stored

146

asREG_SZ (string).

READ <hkey>, <value> Read avalue from the registry part <hkey>. If the registry
valueisin REG_DWORD format, the command will return
"DWORD:n". If thevalueisin REG_BINARY format, the
command will return BINARY : xxxxxx. .. ", wherexx...
represents a hex-string (the hex-string can be converted to
bytesviathe REXX x2c¢ function). Vdues of type REG_SZ
will be returned without prefix, i.e. the command will simply
return the string from the registry.

ENUM <hkey>, <n> Returns the <n>th value name from <hkey> or ##ERROR# #
if no such value exists.
TEST <hkey, <value> This function tests, if the given value exists and returns either

##ERROR# #, or astring intheform ##0K## TYPE nt
LENGTH n1l, where nt and nl are adecimal values indicating
the type of the entry and the length of the data.

CLOSE <hkey> Ends access to <hkey>.

Example:
hk= ZocRegistry ("OPEN", "HKEY CURRENT USER",
"Software\Emtec\ZOC9")

IF hk=="##ERROR##" THEN EXIT
CALL ZocRegistry "WRITE", hk, "Test0l", "Hello World"
CALL ZocRegistry "WRITE", hk, "Test(02", "DWORD:1"
CALL ZocRegistry "WRITE", hk, "Test03", "BINARY:5A4F43"
SAY ZocRegistry ("TEST", hk, "%ZOCS%")
homepath= ZocRegistry ("READ", hk, "$Z0C%")
SAY "ZOC installed in " | |homepath
i= 0
DO FOREVER
x= ZocRegistry ("ENUM", hk, 1)
IF x=="##ERROR##" THEN LEAVE
i= i+1
SAY "Value named " | |Xx
END

CALL ZocRegistry "CLOSE", hk
EXIT

5.46 ZocRequest(<title>, <opt1> [, <opt2> [, <opt3>]])

Displays a dialog window with options and returns a string containing the selected option.

Example:

147

answer= ZocRequest ("What do you want?", "Milk", "Honey")
IF answer=="Milk" THEN DO

END

See also: ZocAsk, ZocAskPassword, ZocM essageBox, ZocRequestList

5.47 ZocRequestList(<title>, <opt1> [, ...]])

Displays a dialog window with alist of options and returns the index of the selected option (or -1
for Cancel). If only one option is passed to the function, it is considered as alist of choices
separated by vertical bars.
Example:
answer= ZocRequestList ("Please select!", "Beer", "Wine",
"Whiskey", "Gin")
IF answer=3 THEN DO
END
answer= ZocRequestList ("Please select!", "Beer|Wine|Whiskey|
Gin™)

IF answer=3 THEN DO

END

See also: ZocAsk, ZocAskPassword, ZocM essageBox, ZocRequest

5.48 ZocRespond <text1> [, <text2>]

Send text2 whenever text2 isreceived while REXX isprocessing a ZocDelay or ZocWait
command.

A maximum of 64 Respond commands can be active simultaneously. <text1> must not contain
carriage returns or line feeds.

If text2isomitted or empty the response command for <text1> iscleared. If text1 isempty (")
all responses are cleared.

Example:

148

/* Wait for 'Command' and auto-skip all possibly prompts in
between */

CALL ZocRespond "Enter", ""M"

CALL ZocRespond "More", ""M"

timeout= ZocWait ("Command")

/* Clear responders */

CALL ZocRespond "Enter"

CALL ZocRespond "More"

The above example waits until the text Command isreceived. Whilewaiting, all Enter and More
prompts are answered automatically by sending Enter. After the Wait is satisfied, the respond
commands are cancelled.

5.49 ZocSaveSessionProfile [<optsfile>]

Save the current session profile to file. If the <optsfile> parameter is omitted, ZOC will ask the user
for afilename.

Example:
CALL ZocSetSessionOption "JumpScroll=3"
CALL ZocSaveSessionProfile "Fastscroll.zoc"

Seealso: ZocCommand(“ SAVESESSIONPROFILE”).

5.50 ZocSend <text>

Sends the given text to the remote host.

Internally the text sending is processed as a series keystrokes rather than sending it directly through
the low level communication channel. The send speed is based on the text sending option int
Options— Session Profile—Text Sending. If you need a faster, more direct version of this command,
please use ZocSendRaw

Also, if the text contains control codes (e.g. ~M for Enter), are replaced with their respective values.
For nearly all emulations these control codes are based on the Control Codes Table Exceptions are
the TN3270 and TN5250 emulations, where ~M is interpreted as Newline/FieldExit, ~ T as Tab and

~7 as Transmit/Enter

Example:
/* send JOE USER<enter>*/
CALL ZocSend "JOE USER™M"

Example:

149

/* Unix login Sequence */
CALL ZocWait "login:"

CALL ZocSend "harry”™M"
CALL ZocWait "password:"
CALL ZocSend "alohomora™M"

Example:
/* 3270/5250 example */
Call ZocSetCursorPos 12,5
CALL ZocSend "Freddie"
CALL ZocSendEmulationKey "NewLine"
CALL ZocSend "Elm Street”"
CALL ZocSendEmulationKey "Enter"

/* 3270/5250 same as above */
CALL ZocSend "Freddie”MElm Street”z"

See also: ZocSendRaw, ZocSendEmulationKey.

5.51 ZocSendEmulationKey <keyname>

Send the code that represents a special key in the current terminal emulation, e.g. send F17 from a
VT220 emulation or Attn under TN3270.

The key names are described in the Key Names Appendix.

Example:
CALL ZocSendEmulationKey "f17" /* Send F17 based on current

emulation */

5.52 ZocSendRaw <datastring>

This command sends the data from datastring in untranslated form. The command does not translate
control sequences like ~M. If you need to send such codes, you will have to use the REXX string

functions like X2C(<hexcode>) or ZocCtrlString to create a corresponding character values (e.g.
X2C(0D) for Enter).

ZocSendRaw may be useful if you want to send binary datato a host. For example, if you want to
send 42 01 00 05 41 43 (hex) through the communication channel, you can do thisasin
the 2nd part of the example below.

Example:

150

CALL

ZocSendRaw "Login"| |X2C(0d) /* Login<enter> */

/* Four times the same result: */

CALL
CALL
CALL
CALL

ZocSendRaw X2C (420100054143)

ZzocSendRaw "B" | |X2C(01) | | X2C(00) | | X2C(05) | |"AC"
ZocSendRaw ZocCtrlString ("B"A"Q@"EAC")

ZzocSend "B"AN@" EAC"

See also: ZocSend, ZocSendEmulationKey, ZocCtrlString

5.53 ZocSessionTab(<subcommand>, <parameters>)

This function allows a REXX script to access or manipulate session tabs. The subcommand defines
the action, the parameters depend on the subcommand.

CLOSEATEXIT

Close the current session tab when the script exits.

Example:

CALL ZocSessionTab "CLOSEATEXIT"

CLOSETAB

Close the session tab with the given index (zero for the leftmost tab or -1 for the current tab).

Example:

CALL ZocSessionTab "CLOSETAB", 2

GETCOUNT

Returns the number of session tabs.

Example:

howmany= ZocSessionTab ("GETCOUNT")

GETCURRENTINDEX

Returns the index of the tab in which this script is running.

Example:

myidx= ZocSessionTab ("GETCURRENTINDEX")

GETINDEXBYNAME, <name>

Returns the index of the first tab that has a given title or -1 if none was found.

151

Example:
srvidx= ZocSessionTab ("GETINDEXBYNAME", "My Server")

GETNAME, <index>

Return the name of the tab with a given index (zero for the leftmost tab) from the 1st parameter. An index
of -1 refers to the session in which the script is running.

Example:
name= ZocSessionTab ("GETNAME", -1)

ISCONNECTED, <index>
Returns #YES## or ##NO## depending on if the tab with the given index has an active connection.

Example:
name= ZocSessionTab ("ISCONNECTED", 2)

NEWSESSION, <title>, <activate>, <sessionprofile[, <connectto>, <script>

Create a new session and return the new session's index.
Parameters:

<title>: A string naming the tab.

<activate>: 0 or 1 depending on if the new tab should be in the background or active.

<sessionprofile>: name of a session profile (e.g. MyProfile.zoc) or ##NULL## for default.

<connectto>: A string as described with the /CONNECT command line parameter) or a string prefixed with
CALL: followed by the name of an entry in the host directory or #NULL## for none.

<script>: The name of a script file to run in the new tab.

Example:

idx1l= ZocSessionTab ("NEWSESSION", "Testl", 1, "##NULL##", "CALL:My Server")
idx2= ZocSessionTab ("NEWSESSION", "Test2", 0, "SSHProfile.zoc", "SSH!
Harry:alohomora@ssh.hogwarts.edu")

idx3= ZocSessionTab ("NEWSESSION", "Test3", 1, "##NULL##", "##NULL##",
"test.zrx")

CALL ZocSessionTab "SETCOLOR", 1idx3, 5

idx4= ZocSessionTab ("NEWSESSION", "Test4", 1, "Standard.zoc", "TELNET!
smtp.hogwarts.edu:25", "test.zrx")

MENUEVENT, <index>, <menu>

Performs a command from the ZOC menu in a different session. The <index> parameter indicates the
session (see the description of the <index> parameter for GETNAME), the <menu> parameter is the
same as for ZocMenuEvent.

Example:
CALL ZocSessionTab "MENUEVENT", idx, "Disconnect"

RUNSCRIPT, <index>, <title>

Starts a script in a different session. The <index> parameter indicates the session (see description of the

152

<index> parameter for GETNAME). Please note that this will not work for sessions which already have a
script running (including the session/script which issues the ZocSessionTab("RUNSCRIPT", ...) command.

Example:

CALL ZocSessionTab "RUNSCRIPT", newidx, "configure.zrx"

SEND, <index>, <text>
Sends text to the session with the given index (similar to using the ZocSend command).

The <index> parameter indicates the session (for details see description of the <index> parameter for
GETNAME).

Example:

CALL ZocSessionTab "SEND", 2, "exit"M"

SETCOLOR, <index>, <color>

Sets the color of the tab with a given index. The <index> parameter indicates the session (for details see
the description of the <index> parameter for GETNAME). The color is a number between 0 and 7.

Example:
CALL ZocSessionTab "SETCOLOR", -1, 4

SETBLINKING, <index>, <blinkflag>

Activates or deactivates the blinking for the tab with a given index. The <index> parameter indicates the

session (for details see the description of the <index> parameter for GETNAME). The <blinkflag> is either
1or0.

Example:

CALL ZocSessionTab "SETBLINKING", -1, 1

SETNAME, <index>, <title>

Sets the name of the tab with a given index. The <index> parameter indicates the session (for details see
the description of the <index> parameter for GETNAME).

Example:

CALL ZocSessionTab "SETNAME", -1, "This Session"

SWITCHTO, <index>

Activate the tab with a given index. The <index> parameter indicates the session(for details see the
description of the <index> parameter for GETNAME).

Example:
CALL ZocSessionTab "SWITCHTO", 2

WRITE, <index>, <text>

153

Write text to the screen of the session with the given index (similar to using the ZocWrite command within
that tab)

The <index> parameter indicates the session (for details see description of the <index> parameter for
GETNAME).

Example:

(CALL ZocSessionTab "WRITE"&comma. l&comma. "Progress 10%"M"

Example:
/* ZocSessionTab sample: send a text to all other tabs */

text= ZocAsk ("Command to send to all tabs:")
IF text="##CANCEL##" THEN DO
n= ZocSessionTabs ("GETCOUNT")
c= ZocSessionTabs ("GETCURRENTINDEX")
SAY n
DO i=0 TO n-1
IF i==c THEN ITERATE
name= ZocSessionTabs ("GETNAME", i)
CALL ZocSessionTabs "SEND", i, text]||""M"
SAY "Sent "||text]|" to "||name
END
END

5.54 ZocSetAuditLogname <filename>

Set the file name for the audit log (alogfile that can not be turned off by the user, aso see the

setting in the ADMINLINI file in the program folder) or turn off audit logging with " (empty string)
as afilename.

5.55 ZocSetAutoAccept 1|0

For those connection types that support it (e.g. Telnet), make the communication method accept
incoming connections.

Example:

154

CALL ZocSetCursorPos 1,15
CALL ZocSetAutoAccept 1 /* accept calls */

5.56 ZocSetCursorPos <row>, <column>

This command moves the cursor to the given position on a TN3270 screen (in other emulations
the command isignored). The positions are 1-based, i.e. the top/left position on screenis 1/1.

Example:
CALL ZocSetDevice "Telnet"

CALL ZocSendEmulationKey "Enter"

5.57 ZocSetDevice <name> [, <commparm-string>]

Change the connection type (communication device). The name must be one of the names from the
list in Options— Session Profile—Connection Type.

The optional commparm-string contains options, which can further tweak the operation of that
connection (e.g. setting Telnet-specific options, see ZocSetDeviceOpts for information about how to
obtain a commparm-string). If the comm parameters are omitted, ZOC uses the options which are
set for the connection type in the currently active session profile.

Example:
CALL ZocSetDevice "Telnet"
CALL ZocConnect "bbs.channell.com"

Example:
CALL ZocSetDevice "SERIAL/MODEM", "[1]COM3:57600-8N1|9]|350"

5.58 ZocSetDeviceOpts <parameter-string>

Thisisarather arcane command, which sets the options for a communication method (device)
directly from REXX. However, since the options strings for the device are not standardized, in order
to find a specific parameter string, you will need to set the options manually in the session profile
dialog and then query the current connection type's parameter string by pressing Shift+Ctrl+F10 in
Z0OC's main window.

L et us assume you want to start a modem session on COM3 with 57600 bps, RTS/CTS and Vdid-
CD active and a break time of 350ms.

1. Go to Options— Session Profile—Connection Type, select Serial/Modem and the set these
options.

155

2. Close the session profile window using 'Save

3. Press Shift+Ctrl+F10

4. The status output of that connection type will show the current device-parameter
[1]COM3:57600-8N1|9|350 which you can use as a parameter to the ZocSetDeviceOpts command.

Example:
/* Set serial options to:
COM3, 57600-8N1, RTS/CTS, Valid-CD, 350ms */
CALL ZocSetDeviceOpts "[1]COM3:57600-8N1|9|350"

Example:
/* Select telnet and set options for
"Start session with local echo" */
CALL ZocSetDevice "TELNET"
CALL ZocSetDeviceOpts "[3]12"

5.59 ZocSetEmulation <emulationname> [, <emuparm-
string>]

The ZocSetEmulation command allows a script to activate a different terminal emulation. The
parameter can be one of the names shown in the Emulation section of the session profile dialog, e.g.
VT220,TN3270, €etc.

The optional emuparm parameter contains optional settings that configure emulation dependent
options (otherwise the settings from the current session profile are used).

Example:
CALL ZocSetEmulation "Xterm"

5.60 ZocSetHostEntry "name", "<key>=<value>"

Sets avalue for ahost directory entry from akey-value pair. To find actual names for these key-
value pairs, please check the file HostDirectory.zhd (stored in the ZOC data folder) using an editor.
Thefile contains al the key-value pairs that make up your host directory.

If instead of a key-value pair, you pass the string #NEW##, a new host directory entry
with that name will be created (if it does not yet exist). You can then configure it with
subsequent calls that provide key-value pairs.

See the ZocSetSessionOption command for more background about key-value pair handling in
general.

Example:

156

CALL ZocSetHostEntry "MyBBS", "emulation=1"

pair= ZocGetHostEntry ("Z0C Support BBS", "calls")

PARSE VALUE pair WITH key"="value

value= value+l

CALL ZocSetHostEntry "ZOC Support BBS", "calls="||value

Example:
name= "My Router"
Call ZocSetHostEntry name, "##NEW##"
Call ZocSetHostEntry name, 'connectto="192.168.1.1"'
Call ZocSetHostEntry name, 'username="root"'
Call ZocSetHostEntry name, "deviceid=9"
Call ZocSetHostEntry name, "emulationid=3"

See also: ZocSetSessionOption, ZocGetHostEntry

5.61 ZocSetLogfileName <filename>

Set new name for logging.

Example:
CALL ZocSetLogfileName "Today.LOG"

5.62 ZocSetlLogging 0|1 [,1]

Suspend/resume logging. If a second parameter with value 1 is given, ZocSetLogging will suppress
the notification window.

Example:
CALL ZocSetLogging 1

5.63 ZocSetMode <key>, <value>

This commands allows you to set operation modes for some of the script commands. The following
modes are supported:

SAY A value of RAW setsthe SAY command to not convert control codeslike ~M into
their respective character values. A value of COOKED switches back to standard
behavior.

157

Example:
CALL ZocSetMode "SAY", "RAW"

RESPOND A value of RAW sets the respond command to not convert control codes like ~M
into their respective values for both sides of the command.

Example:
CALL ZocSetMode "RESPOND", "RAW"

5.64 ZocSetProgramOption "<key>=<value>"

This command modifies a ZOC option from the Options— Program Settings dialog. (similarly
ZocSetSessionOption modifies the Options— Session Profile). The function basically works the
same as ZocSetSessionOption but the underlying file which contains the key-value pairsis
Standard.zfg You can load the file into an editor and you will see that the key names are mostly self
explanatory. If you have problems finding a specific key or value, you can start the REX X script
recorder, change the options, stop the recording and ook at the resulting script.

Example:
CALL ZocSetProgramOption "SafAskClrCapt=yes"
CALL ZocSetProgramOption 'ScriptPath="ZocREXX"' /* mind the
quotes */
CALL ZocSetProgramOption 'ScriptPath="'| |pathvar||'"' /*

mind the quotes */

See also: ZocCommand("SAVEPROGRAMSETTINGS"), ZocGetSessionOption,
ZocSetSessionOption, ZocGetProgramOption

5.65 ZocSetScriptOutputDestination "DEFAULT]
DATASTREAMBROWSER|FILE:<filename>"

This command allows you to redirect the output of a REXX script to the datastream browser (View-
menu) or to afile. This affects output from the REXX commands SAY and TRACE. Output from
ZocWrite will still appear in the terminal area.
Example:

CALL ZocSetScriptOutputDestination "DATASTREAMBROWSER"

See also: ZocWrite, ZocWriteln

158

5.66 ZocSetSessionOption "<key>=<value>"

Sets a ZOC option from the Options— Session Profiles window, based on a key-value pair. To find
out more about the key-value pairs, please have alook at the contents of the Standard.zoc file (or
any other *.zoc session profile). Thefile contains al the key-value pairs, which make up a session
profile.

If you are not sure what the value of a certain key means, just set the option you want to changein
the options window, then click Save and check the optionsfile for the new key-value pair. Or you
can also start the REX X script recorder, then make the changes to the session profile and then
stop recording and look at the resulting script.

Example:
CALL ZocSetSessionOption "JumpScroll=3"
CALL ZocSetSessionOption "ShowChat=no"

CALL ZocSetSessionOption 'MdmIni="ATZ"M"' /* mind the quotes
*/
CALL ZocSetSessionOption 'TransAutoRemove="'| |valvar]||'"' /*

mind the quotes */

Note: ZocSetSessionOption/ZocGetSessionOption will only work for options from the
Options— Session Profile dialog. To change Options— Program Settings, use
ZocSetProgramOption.

See also: ZocCommand("SAVESESSIONPROFILE"), ZocSaveSessionProfile,
ZocGetSessionOption, ZocGetProgramOption, ZocSetProgramOption

5.67 ZocSetTimer <hh:mm:ss>

Set connection timer to given time. If called with an empty parameter, the function will return the
current duration of the session timer in seconds. Calling the function with a parameter string
"sTOP" will hold the timer and "RESUME" will continue with a held timer.

Example:
CALL ZocSetTimer "00:00:20"

5.68 ZocSetUnattended 0|1

Enable or disable ZOC's unattended mode (same as command line parameter /U).

Example:
CALL ZocSetUnattended 1

159

5.69 ZocShell <command>, [<viewmode>]

Execute acommand or program in a shell window via cmd.exe /c <command> (Windows) or
/bin/bash -¢ "<command>" (macOS). Thisissimilar to using to REXX's native ADDRESS CMD
"<command>" and essentially allows the execution of anything that you can execute in the
shell/terminal window of the operating system.

Windows only: The optional viewmode parameter controls how the black shell window is shown:
0= normal, 1= hidden, 2= minimized, 3= maximized.

In many cases ZocShell isidentical to using the native REXX shell interface viaADDRESS CMD
"<command>"

Example:
CALL ZocShell "DEL FILE.TMP"

CALL ZocShell "touch /tmp/file.lck", 1

See also: ZocShellExec, ZocShellOpen, ZocFileDel ete, ZocFileRename

5.70 ZocShellExec <command>[, <viewmode>]

Execute a program directly (i.e. without passing it through the shell's command interpreter, thus
avoiding the overhead of running the shell). Under Windows this only works for .com and .exe files
(i.e. it will not work for .CMD scripts and internal shell commands like DEL, REN etc.).

The optional viewmode parameter controls how the application window is shown:
0= normal, 1= hidden, 2= minimized, 3= maximized.

ZocShellExec also returns the exit code of the application to the REXX script.
Example:

CALL ZocShellExec 'notepad.exe "somefile.txt"'

See also: ZocShell, ZocShellOpen

5.71 ZocShellOpen <filename>

This function is somewhat equivaent of adouble click on afile, because it passes afilename to the
operating system with arequest to open it. The operating system will then start the program which
is associated with the type of that file (e.g. a PDF viewer for PDF files or Notepad for TXT files).
Alternately, an URL can be passed as a parameter instead of a filename.

Example:

160

CALL ZocShellOpen 'C:.pdf'

Example:

CALL ZocShellOpen 'https://www.emtec.com/'

See also: ZocShell, ZocShellExec

5.72 ZocString(<subcommand>, <inputstring>, <p1> |,

<p2>])

Thisisafunction to manipulate a string and return a modified copy. The subcommand and the
parameters <pl> and <p2> control the modification.

LINE

LINECOUNT

LOAD

SAVE

Return the <p1>th element of <inputstring> which is delimited by aline
feed (hex OA) and stripped of leading or trailing carriage return characters
(hex OD) (simply speaking, this refersto the <p1>th line). Thisisuseful to
parse multiline results from a ZocReceiveBuf call, e.g. name=
ZocString ("LINE"™, data, 4) will returnthe 4thlinefrom the data
variable.

Returns the number of elementsin <inputstring> which are accessible as
LINE.

Returns the content of the file with name <inputstring> (the fileisloaded in
text mode, line endings are converted to LF (hex OA)). The LINE
subcommand of ZocString can be used to extract lines from the result
string.

Saves the content of string <p1> in afile with name given in <inputstring>
(thefileis saved in text mode, LF line endings are converted to CR/LF
under Windows).

MIME-ENCODE
MIME-DECODE
UTF8-ENCODE
UTF8-DECODE
AES256-ENCRY PT

AES256-DECRY PT

Converts <inputstring> to base-64/MIME.

Converts <inputstring> from base-64/MIME.
Converts <inputstring> from an 8-bit string to UTFS8.
Converts <inputstring> form an UTF8-string to 8-hit.

Encrypts the string <p1> viaAES256 using the encryption-key from
<inputstring>. The result is MIME-encoded.

Decrypts the MIME-encoded string from <p1> using the encryption-key
<inputstring>.

PART Return the <p1>th part of <inputstring> which is delimited by <p2>, e.g.
name= ZocString ("PART", "Anne|Charly|Joe", 2, "|")
will return "Charly".

PARTCOUNT Return the number of <p1>-delimited partsin <inputstring>, e.g. count=

161

ZocString ("PARTCOUNT", "Anne|Charly|Joe™, "|") will
return 3.

REPLACE Return a copy of <inputstring> where all occurrences of <p1> are replaced
by <p2>, e.g. betterstr= ZocString ("REPLACE", str,
"HyperTerminal™, "ZOC")

REMOVE Return a copy of <inputstring> where all occurrences of <p1> are removed,
eg. betterstr= ZocString ("REMOVE", str,
"HyperTerminal")

REMOVECHARS Return acopy of <inputstring> from which al characters of <p1> were
renmvaieg.str= ZocString ("REMOVECHARS", str,
"0123456789"| |X2C (09)) removesall digits and tab characters from
STR.

TAB Return the <p1>th element of <inputstring> which is delimited by atab-
character, 9. name= ZocString ("TAB", tabbed data, 2))

TABCOUNT Return the number of elements of <inputstring> accessible as TAB.

WORD Return the <p1>th element of <inputstring> which is delimited by a space,
€.0. name= ZocString ("WORD", "The quick brown fox",
3) will return "brown". Same as REXX's native WORD() function.

WORDCOUNT Return the number of elements of <inputstring> accessible as WORD.

Example:

CALL ZocReceiveBuf 1024
CALL ZocSend "ps™M"
CALL ZocWait "S$"

data= ZocReceiveBuf (0)

/* display result list line by

line but ignoring the first*/
howmany= ZocString ("LINECOUNT", data)
DO i=2 TO howmany

SAY ZocString ("LINE", data, i)

END

Example:

key= "Secret.740.5%&"
n= ZocString ("AES256-ENCRYPT", key, "Hello World!")

SAY "Encoded: "||n
n2= ZocString ("AES256-DECRYPT", key, n)
SAY "Decoded: "||n2

See also: ZocCtrlString

162

5.73 ZocSuppressOutput 0|1

Enables or disables suppressing of screen output. This command allows you to send/receive
characters without any screen activity. Logging to the capture buffer and to file is also suppressed.

Output suppression is automatically reset to normal when the script ends or upon disconnecting
from a host.

5.74 ZocSynctime <time>

This command lets you define the sync-time period (the default time is 250ms).

Background: Because REXX programs are running parallel to ZOC, the main window may receive
and process more incoming data while REXX is performing its own work. This means that in some
situationsit is possible that text, which you expect to be received and which are going to wait for,
has actually already scrolled by.

A typical examplefor thisis aloop that attempts to process all incoming lines of text.

Example:
DO FOREVER
timeout= ZocWaitLine ()
IF timeout\=640 THEN DO
data= ZocLastLine ()
/* process data in some way */
END
END

In this example ZOC could receive more text while the REXX program still processes the data from
ZocLastLine and before it is ready to loop and issue the next ZocWaitLine.

To address this problem, ZOC's processing of incoming traffic is suspended for a short time period
(the sync-time) whenever a Wait-command has been satisfied, thus giving the REXX program time
to process the result and to get ready to wait for more data.

After aWait-command (ZocWait, ZocWaitMux, etc.), ZOC will resume processing of incoming
data either if the sync-time has elapsed or if the REXX program issues another Wait-command or if
another command is processed, which needs to interact with the main window (ZocWrite, ZocSend,
etc. but also SAY, TRACE, because those output to the main window).

Important: Instead of increasing the sync-time, in loops like the above, you should consider to
merely collect and store the data for later processing (the ZocWaitLine command has an example of
how to do this properly). An even better alternative is the use ZocReceiveBuf to catch all the datain
one packet.

See also: ZocWait, ZocWaitldle, ZocWaitLine, ZocWaitMux, ZocReceiveBuf, ZocLastLine

163

5.75 ZocTerminate [<return-code>]

Causes ZOC to end the program and close after the REXX program has ended. Usually an EXIT
command will follow ZocTerminate.

If you supply the return-code parameter, the ZOC process will return this value to the operating
system or to the calling program.

Example:
CALL ZocTerminate
EXIT

5.76 ZocTimeout <sec>

Set maximum time to wait for a ZocWait/ZocWaitM ux/ZocWaitL ine/ZocEventSemaphore
command.

Example:
/* Make subsequent ZocWait commands expire after 30 seconds

*/
CALL ZocTimeout 30

/* Wait until the host sends 'ready' of until the timeout
expires */

timeouttimeout= ZocWait ("ready")

IF timeout=640 THEN SAY "ready-prompt not received within 30
seconds"

See also: ZocWait, ZocWaitldle, ZocWaitLine, ZocWaitMux, ZocEventSemaphore, ZocSyncTime

5.77 ZocUpload <protocol>[:<options>],<path/filename>

Start to upload afile using the given file transfer protocol.

If the filename contains no path, it is taken from the standard upload directory, otherwise, if the path
isrelative, it isaccessed relative to ZOC's program folder or relative to the upload folder.

For file transfer protocols which support multiple files (Y modem, Zmodem), the file parameter may
contain wildcards. Multiple filenames may be provided as one string in which the file names are
separated by vertical bars * . pdf | somefile. txt

The protocol nameisASCII, BINARY or the name of thefile transfer protocol from the
Options— Session Profile—File Transfer dialog, e.g. Zmodem Or Kermi t.

Depending on the success of the transfer, ZocUpload will return ##0K## or ##ERROR# #.

164

Example:
CALL ZocUpload "ZMODEM", "id dsa.pub"

uploadsid_dsa.pub from the local upload folder to the remote host using the Zmodem protocol.

Example:
success= ZocUpload ("XMODEM", "updates.zip")

uploads the file updates.zip from the upload folder via Xmodem protocol and obtains a success
indicator (# #OK## or ##ERROR##).

Example:
CALL ZocUpload "BINARY", "CNC-CONTROL.DAT"

sends the contents of the file directly without any trandation or protocol.

Example:
CALL ZocUpload "ASCII", "commands.txt"

uploads commands.txt using the text sending options which are currently configured in the session
profile.

Example:
CALL ZocUpload "ASCII:CRONLY+10", "\FAR\AWAY\LIST.TXT"

uploads LIST.TXT viatext/ascii transfer using CR-only as the end of line marker and a character
delay of 10ms.

Example:
CALL ZocUpload "ASCII:1+3", "HERE\SOME.DATA"

uploads the file SOME.DATA viaascii transfer with CR/LF trandation and a character delay of
3ms.

Transfer Options

For all protocols (except IND$FILE, ASCII and BINARY, see below), you can set the optional
options by copying a string from a session profile which configures that protocol. To do this, set
your desired protocol optionsin ZOC's Options— Session Profile—~ File Transfer dialog and query
the current parameter string by pressing Shift+Ctrl+F10 in ZOC's main window.

The optional options are set by using a string that configures that protocol. Vdid strings can be
obtained, if you set your protocol optionsin ZOC's Options— Session Profile—File Transfer dialog,
press Save and then edit the Options\Standard. zoc fileon your hard disk. The
[OPTS_TRANSFER] section will contain an ActiveTransfer=n entry (e.g. n=2 for Zmodem)
and alist of entriesnamed TransferOpts#nn each of which corresponds to one file transfer
protocol (TransferOpts#02 being the Zmodem settings).

Example:

165

If you want to perform afile transfer via Xmodem using the CRC option and 1KB data blocks, you

1. Go to ZOC's Options~ Session Profile~ Transfer dialog, select Xmodem and configure these
options.

2. Close the session profile window (click 'Save’)

3. In ZOC's main window press Shift+Ctrl+F10

4. The status output will show the current transfer options "[0]kc" which you can use as a parameter
to the ZocUpload command.

5. The REXX command will be CALL, ZocUpload "XMODEM: [0]kc", "datafile.zip"
(please note that the options are case sensitive).

Transfer OptionsASCI |

For the file transfer in ASCIl mode (equivalent of Transfer, Send Text File), the options parameter
has the format "mode+chardelay+linedelay”, where mode specifies the end of linetrandation as a
number or text (ASIS=0, CRLF= 1, CRONLY= 2, LFONLY = 3) and delays are the per character
and per line send delays, e.g. valid parameters would be 2+5+100 or CRONLY+5+100 (which
means CR only with 5 milliseconds per character and 100 ms extra delay at the end of each line).

Transfer Options BINARY

For afile transfer in BINARY-mode (equivalent of Transfer, Send Text File), the options parameter
can be a number. This number sets the character delay in milliseconds (otherwise the text sending
delay from the session profile will be used).

Transfer Options IND$FILE

The INDS$FILE file transfer type is an exception to the above. The options part for IND$SFILE
actually contains the corresponding host command to perform the transfer (you can look up this
command at the bottom of the dialog which is shown when performing a manual file transfer via
IND$FILE), eg. CALL ZocUpload "INDSFILE:TSO INDSFILE PUT
'userid.projects.asm(report)' ASCII CRLF", "report.asm"

5.78 ZocWait(<text>)

Waits until the given text isreceived. If ZocWait times out (see ZocTimeout), it returns a value of
640.

Example:
CALL ZocTimeout 20
timeout= ZocWait ("Password")
IF timeout=640 THEN SAY "Password prompt not received within
20 seconds"
ELSE CALL ZocSend "alohomora”m"

Example:

166

CALL ZocTimeout 10

timeout= ZocWait ("enter command>")
IF timeout=640 THEN SIGNAL the end
CALL ZocSend "ENABLE FIREWALL"M"

timeout= ZocWait ("enter command>")
IF timeout=640 THEN SIGNAL the end
CALL ZocSend "ENABLE IPFILTER"M"

timeout= ZocWait ("enter command>")
IF timeout=640 THEN SIGNAL the end

SAY "Firewall and Ip-Filter activated!"

the end:
Call ZocDisconnct

Note: ZOC automatically filters ANSI/V Txxx/etc. control sequences from the data stream to avoid
interference with the ZocWait command (see ZocWaitForSeq).

Note: If you are using ZocWait from a DDE controller, the command must be sent as via sent asvia
DDE-Request rather than via DDE-Execute.

Note: With the TN3270 and TN5250 emulations, the command can be used to wait for ~ z, which
will be used as asignal that indicates that the emulation is ready to accept input again. Also,
because these emulations are transmitting whole screens at a time, you should only issue one
ZocWait per screen. In other words, if aZocWait("LOGON:") returns, you can assume that the
whole logon-screen has arrived and is ready for input.

See also: ZocWaitldle, ZocWaitLine, ZocWaitMux, ZocTimeout, ZocReceiveBuf, ZocL astLine,
ZocSyncTime, ZocWaitForSeq

5.79 ZocWaitForSeq 1|0|"on"|"off"

Normally Wait-commands ignore emulation control sequences in the data stream. If you need to
wait for an emulation control, you can use this command to enable their visibility to the Wait
commands.

This command also turns on/off filtering of emulation controls for ZocReceiveBuf.

Example:

167

esc= ZocCtrlString("~[")

/* wait for VT220 color reset */
CALL ZocWaitForSeqg "On"
Call ZocWait esc||"[Om"

See also: ZocWait, ZocWaiMux, ZocReceiveBuf

5.80 ZocWaitldle(<time>)

Wait until there was no data received from the remote host for the given amount of time (in
seconds).

If the host keeps sending data, the command will time out after the time set by ZocTimeout (avalue
of 640 will be returned to indicate the timeout).

Example:
CALL ZocTimeout 60
timeout= ZocWaitIdle(2.5)
IF timeout=640 THEN SAY "Host kept sending a steady stream of
data for 60 seconds"
ELSE SAY "OK, finally the host did stop the chatter (2.5
seconds of silence detected)"

See also: ZocWait, ZocWaitLine, ZocWaitMux, ZocWaitNumChars, ZocTimeout, ZocSyncTime,
ZocReceiveBuf, ZocLastLine

5.81 ZocWaitLine()

Wait for the next non empty line of text from the remote host (if you want to wait for the next line,
no matter if empty or not, use EXMLPL(ZocWait "*M")).

The received text will then be available using the ZocL astLine function or it can be accessed with
some extra coding via ZocReceiveBuf.

If ZocWaitLine times out, it returns a value of 640.

Note: Since REXX isrunning initsown thread, it is possible that ZocWaitLine will misslinesif
new text isreceived by ZOC while the the REXX program is still processing the previously
received data. Thus, especialy when using ZocWaitLine in aloop, you should just just collect the
data until it is complete and then processit in a 2nd pass (see the sample below and the description
of the ZocSyncTime command).

Example:

168

rc= ZocWaitLine ()
IF rc\=640 THEN DO
reply= ZocLastLine ()
IF reply=="CONNECT" THEN

Example:
/* issue a command that outputs a bunch of lines of data */
CALL ZocSend 'dig emtec.com && echo "<<END>>""M'

/* first collect all the data and store it in an array */
n= 0
DO FOREVER

timeout= ZocWaitLine ()

/* exit loop if no more data */
IF timeout=640 THEN LEAVE

line= ZocLastLine ()

/* exit loop on a line meeting some condition */
IF line=="<<END>>" THEN LEAVE

/* store line in array */

n= n+1
data.n= line
data.0= n

END

/* when done, process each line of collected data in a 2nd
pass */
DO i= 1 TO data.O0

line= data.i

/* line can now leisurly be processed

without fear of missing data */
END

See also: ZocWait, ZocWaitldle, ZocWaitM ux, ZocWaitNumChars, ZocTimeout, ZocSyncTime

5.82 ZocWaitMux(<text0> [, <text1> ...])

Wait for one of multiple textsin the input data stream. The command will return if one of the given
textsis found in the incoming data stream or after the default timeout has expired. The return code
provides information about which text wasfound (0, 1, 2 ...) or if the command timed out (return
code 640).

Note: The sum of the lengths of all texts must not exceed 4096 characters.

169

Example:

CALL ZocTimeout 45

ret= ZocWaitMux ("You have mail", "Main Menu")

SELECT
WHEN ret=0 THEN CALL handle maildownload
WHEN ret=1 THEN LEAVE
OTHERWISE SIGNAL handle error

END

See also: ZocWait, ZocWaitldle, ZocWaitLine, ZocWaitNumChars, ZocTimeout, ZocSyncTime

5.83 ZocWaitNumChars(<n>)

Waits for a specific number of characters be received. These could be any characters including
newline or control characters. To find out which characters were received, set up areceive buffer
(see ZocReceiveBuf) before issuing the ZocWaitNumChars command and read its content after the
ZocWaitNumChars command returns.

If less than the given number of charactersis received within the wait timeout
(see ZocTimeout), the function will return the value 640.

Example:
CALL ZocTimeout 45
CALL ZocReceiveBuf 100
ret= ZocWaitNumChars (5)
IF ret\=640 THEN DO
data= ZocReceiveBuf (0)
END

See also: ZocReceiveBuf, ZocWait, ZocWaitldle, ZocWaitLine, ZocTimeout, ZocSyncTime

5.84 ZocWindowState(MINIMIZE|MAXIMIZE|RESTORE|
ACTIVATE|MOVE:x,y|QUERY)

Set the State of ZOC's main window to the state given or moves the window to the given pixel
coordinate (e.g. MOVE:20, 100).

In used in function call syntax, the command will return new state of the window.

A parameter string of QUERY will just return the current window state as MINIMIZED,
MAXIMIZED or RESTORED (please note the extraletter D at the end of those words).

Example:

170

now= ZocWindowState ("QUERY")
IF now\="MINIMIZED" THEN DO

CALL ZocWindowState "MINIMIZE"
END

5.85 ZocWrite <text>

Write text to screen. This command is similar to REXX's native SAY command, but it does not
place the cursor in the next line after printing the text and it understands control codes like ~M
(Enter) or ~ [(ESC).

Example:

/* use a VT220 escape sequence to highlight a word */
CALL ZocWrite "Hello "[[1lm World”[[Om"

See also: ZocSetScriptOutputDestination

5.86 ZocWriteln <text>

Write text to screen and skip to the next line. This command is similar to the REXX SAY command,
but it resolves control codes (e.g. ~ [for ESC).

Example:
CALL ZocWriteln "Hello "M"J World"
SAY "Hello"| |X2C(0OD) | |X2C(0A) | |"World"

See also: ZocSetScriptOutputDestination

171

6 Stream Input and Output

And the streams thereof shall be turned into pitch
Isaiah 33:21

For every one that asketh receivedth;

and he that seeketh findth;

and to himthat knocketh it shall be opened.
Matthew 7:8

This chapter treats the topic of input from and output to streams using the built-in functions. An
overview of the other parts of the input/output (I/0O) system is aso given but not discussed in detail.
At the end of the chapter there are sections containing implementation-specific information for this
topic.

6.1 Background and Historical Remarks

Stream 1/0O isaproblem areafor languages like REXX. They try to maintain compatibility for all
platforms (i.e. to be non-system-specific), but the basic 1/0 capabilities differ between systems, so
the simplest way to achieve compatibility isto include only a minimal, common subset of the
functionality of al platforms. With respect to the functionality of the interface to their surrounding
environment, non-system-specific script languages like REXX are inherently inferior to system
specific script languages which are hardwired to particular operating systems and can benefit from
all their features.

Although REXX formally hasits own I/O constructs, it is common for some platforms that most or
all of the I/O is performed as operating system commands rather than in REXX. Thisis how it was
originally done under VM/CMS, which was one of the earliest implementations and which did not

support REXX's /O constructs. There, the EXECTIO program and the stack (among other methods)
are used to transfer data to and from a REXX program.

Later, the built-in functions for stream 1/0O gained territory, but lots of implementations still rely on
special purpose programs for doing I/O. The general recommendation to REXX programmersisto
use the built-in functions instead of special purpose programs whenever possible; that isthe only
way to make compatible programs.

6.2 REXX's Notion of a Stream

REXX regards a stream as a sequence of characters, conceptually equivalent to what a user might
type at the keyboard. Note that a stream is not generally equivalent to afile. [MCGH:DICT]
defines afile as"acollection of related records treated as a unit,” while [OX:CDICT] definesit as
"Information held on backing store[...] in order (a) to enable it to persist beyond the time of

172

execution of asingle job and/or (b) to overcome space limitationsin main memory." A stream is
defined by [OX:CDICT] as"aflow of data characterized by relative long duration and constant
rate."

Thus, afile hasaflavor of persistency, while a stream has aflavor of sequence and momentarily.
For a stream, dataread earlier may already have been lost, and the data not yet read may not be
currently defined; for instance the input typed at a keyboard or the output of a program. Even
though much of the REXX literature use these two terms interchangeably (and after all, thereis
some overlap), you should bear in mind that there is a difference between them.

In this documentation, the term "fil€" means "a collection of persistent data on secondary storage, to
which random access and multiple retrieval are allowed." The term "stream” means a sequential
flow of datafrom afile or from a sequential device like aterminal, tape, or the output of a program.
The term stream is also used in its strict REXX meaning: a handle to/from which aflow of data can
be written/read.

6.3 Short Crash-Course

REXX 1/O isvery simple, and this short crash course is probably al you need in afirst-time reading
of this chapter. But note that that, we need to jump a bit ahead in this section.

Toread aline from astream, usethe LINEIN () built-in function, which returns the dataread. To
write astream, use the LINEOUT () built-in function, and supply the data to be written as the
second parameter. For both operations, give the name of the stream as the first parameter. Some
small examples:

contents = linein('myfile.txt')
call lineout 'yourfile.txt', 'Data to be written'

The first of these reads aline from the streammyfile. txt, while the second writesaline to the
stream yourfile.txt. Boththese callsoperate on lines and they use a system specific end-of -
line marker as a delimiter between lines. The marker istagged on at the end of any data written out,
and stripped off any data read.

Opening a stream in REXX is generally done automatically, so you can generally ignore that in your
programs. Another useful method is repositioning to a particular line:

call linein 'myfile.txt', 12, O
call lineout 'yourfile.txt',, 13

Where the first of these sets the current read position to the start of line 12 of the stream; the second
sets the current write position to the start of line 13. Note that the second parameter is empty, that
means no data is to be written. Also note that the current read and write positions are two
independent entities; setting one does not affect the other.

The built-in functions CHARIN () and CHAROUT () are similar to the ones just described, except
that they are character-oriented, i.e. the end-of-line delimiter is not treated as a special character.

Examples of use are:

173

say charin('myfile.txt', 10)
call charout 'logfile', 'some data'

Here, the first example reads 10 characters, starting at the current input position, while the second
writes the eleven characters of "some data’ to the file, without an end-of-file marker afterward.

It is possible to reposition character-wise too, some examples are:

call charin 'myfile',, 8
call charout 'foofile,, 10

These two clauses repositions the current read and write positions of the named files to the 8" and
10" characters, respectively.

6.4 Naming Streams

Unlike most programming languages, REXX does not use file handles; the name of the stream is
also in genera the handle (although some implementations add an extralevel of indirection). You
must supply the nameto all 1/O functions operating on a stream. However, internally, the REXX
interpreter islikely to use the native file pointers of the operating system, in order to improve speed.
The name specified can generally be the name of an operating system file, adevice name, or a
special stream name supported by your implementation.

The format of the stream name is very dependent upon your operating system. For portability
concerns, you should try not to specify it asalitera string in each 1/0 call, but set avariable to the
stream name, and use that variable when calling I/O functions. This reduces the number of places
you need to make changes if you need to port the program to another system. Unfortunately, this
approach increases the need for PROCEDURE EXPOSE, since the variable containing the files
name must be available to all routines using file I/O for that particular file, and all their non-
common ancestors.

Example: Specifying file names

The following code illustrates a portability problem related to the naming of streams. The variable
filename is set to the name of the stream operated on in the function call.

filename = '/tmp/MyFile.Txt'

say ' first line is' linein(filename)
say 'second line is' linein(filename)
say ' third line is' linein(filename)

Suppose this script, which looks like it is written for Unix, is moved to aVMS machine. Then, the
stream name might be something like SYSSTEMP : MYFILE . TXT, but you only need to change the

script at one particular point: the assignment to the variable £ i 1ename; as opposed to three places
if the stream name is hard-coded in each of the three callsto LINEIN ().

If the stream name is omitted from the built-in I/O functions, a default stream is used: input

174

functions use the default input stream, while output functions use the default output stream. These
areimplicit references to the default input and output streams, but unfortunately, thereisno
standard way to explicitly refer to these two streams. And consequently, there is no standard way to
refer to the default input or output stream in the built-in function STREAM () .

However, most implementations allow you to access the default streams explicitly through a name,
maybe the nullstring or something like stdin and stdout. However, you must refer to the
implementation-specific documentation for information about this.

Also note that standard REXX does not support the concept of adefault error stream. On operating
systems supporting this, it can probably be accessed through a special name; see system-specific
information. The same applies for other special streams.

Sometimes the term "default input stream” is called "standard input stream,” "default input
devices," "standard input,” or just "stdin."

The use of stream names instead of stream descriptors or handles is deeply rooted in the REXX
philosophy: Data structures are text strings carrying information, rather than opaque data blocks in
internal, binary format. This opens for some intriguing possibilities. Under some operating systems,
afile can be referred to by many names. For instance, under Unix, afile can bereferred to as
foobar, ./foobar and ./ ./foobar. All which name the same file, athough a REXX
interpreter may be likely to interpret them as three different streams, because the names themselves
differ. On the other hand, nothing prevents an interpreter from discovering that these are names for
the same stream, and treat them as equivalent (except concerns for processing time). Under Unix,
the problem is not just confined to the use of . / in file names, hard-links and soft-links can produce
similar effects, too.

Example: Internal file handles

Suppose you start reading from a stream, which is connected to afile called foo. You read the first
line of foo, then you issue acommand, in order to rename foo to bar. Then, you try to read the
next line from foo. The REXX program for doing this under Unix looks something like:

signal on notready

linel = linein('foo')
'mv foo bar'
line2 = linein('foo')

Theoretically, the file foo does not exist during the second call, so the second read should raise the
NOTREADY condition. However, aREXX interpreter islikely to have opened the stream already,
so it is performing the reading on the file descriptor of the open file. It is probably not going to
check whether the file exists before each 1/0 operation (that would require alot of extra checking).
Under most operating systems, renaming afile will not invalidate existing file descriptors.
Consequently, the interpreter is likely to continue to read from the original foo file, even though its
has changed.

Example: Unix temporary files

On some systems, you can delete afile, and still read from and write to the stream connected to that

175

file. Thistechnique is shown in the following Unix specific code:

tmpfile = '/tmp/myfile’

call lineout tmpfile, "'

call lineout tmpfile,, 1

'rm' tmpfile

call lineout tmpfile, 'This is the first line'

Under Unix, this technique is often used to create temporary files; you are guaranteed that the file
will be deleted on closing, no matter how your program terminates. Unix deletes afile whenever
there are no more references to it. Whether the reference is from the file system or from an open
descriptor in auser processisirrelevant. After the rm command, the only referenceto thefileis
from the REXX interpreter. Whenever it terminates, the file is del eted--since there are no more
referencesto it.

Example: Files in different directories

Hereisyet another example of how using the filename directly in the stream I/O functions may give
strange effects. Suppose you are using a system that has hierarchical directories, and you have a
function CHDIR () which setsa current directory; then consider the following code:

call chdir '../dirl"
call lineout 'foobar', 'written to foobar while in dirl'
call chdir '../dir2'

call lineout 'foobar', 'written to foobar while in dir2'

Since thefileisimplicitly opened while you arein the directory dir1, thefile foobar refersto a
file located there. However, after changing the directory to dir2, it may seem logical that the
second call to LINEOUT () operateson afilein dir2, but that may not be the case. Considering
that these clauses may come a great number of lines apart, that REXX has no standard way of
closing files, and that REXX only have one file table (i.e. open files are not local to subroutines);
this may open for a significant astonishment in complex REXX scripts.

Whether an implementation treats . /. / foo and . / foo asdifferent streamsis system-dependent;
that applies to the effects of renaming or deleting the file while reading or writing, too. See your
interpreter's system-specific documentation.

Most of the effects shown in the examples above are due to insufficient isolation between the
filename of the operating system and the file handle in the REXX program. Whenever afile can be
explicitly opened and bound to afile handle, you should do that in order to decrease the possibilities
for strange side effects.

Interpreters that allow this method generally have an OPEN () function that takes the name of the
filesto open as a parameter, and returns a string that uniquely identifies that open file within the
current context; e.g. an index into atable of open files. Later, thisindex can be used instead of the
filename.

Some implementations allow only this indirect naming scheme, while others may allow a mix
between direct and indirect naming. The latter is likely to create some problems, since some strings

176

are likely to be both valid direct and indirect file ids.

6.5 Persistent and Transient Streams

REXX knows two different types of streams: persistent and transient. They differ conceptually in
the way they can be operated, which is dictated by the way they are stored. But thereisno
difference in the data you can read from or write to them (i.e. both can used for character- or line-
wise data), and both are read and written using the same functions.

[Persistent streams]
(often referred to just as "files") are conceptually stored on permanent storage in the
computer (e.g. adisk), asan array of characters. Random access to and repeated retrieval of
any part of the stream are allowed for persistent streams. Typical example of persistent
streams are normal operating system files.

[Transient streams]
aretypically not available for random access or repeated retrieval, either because it is not
stored permanently, but read as a sequence of datathat is generated on the fly; or because
they are available from a sequential storage (e.g. magnetic tape) where random accessis
difficult or impossible. Typical examples of transient streams are devices like keyboards,
printers, communication interfaces, pipelines, etc.

REXX does not allow any repositioning on transient streams; such operations are not conceptually
meaningful; atransient stream must be treated sequentially. It is possible to treat a persistent stream
as atransient stream, but not vice versa. Thus, some implementations may allow you to open a
persistent stream as transient. This may be useful for files to which you have only append access,
i.e. writes can only be performed at the end of file. Whether you can open a stream in a particular
mode, or change the mode of a stream already open depends on your implementation.

Example: Determining stream type

Unfortunately, there is no standard way to determine whether a given fileis persistent or transient.
You may try to reposition for the file, and you can assume that the fileis persistent if the
repositioning succeeded, like in the following code:

streamtype: procedure

signal on notready

call linein arg(l), 1, O

return 'persistent' /* unless file is empty */
notready:

return 'transient'

Although the ideain this code is correct, there are unfortunately afew problems. First, the
NOTREADY condition can be raised by other things than trying to reposition atransient stream; e.g.
by any repositioning of the current read position in an empty file, if you have write access only, etc.
Second, your implementation may not have NOTREADY, or it may not use it for this situation.

The best method isto usea STREAM () function, if oneis available. Unfortunately, that is not very

177

compatible, since no standard stream commands are defined.

6.6 Opening a Stream

In most programming languages, opening afile isthe process of binding afile (given by afile
name) to an internal handle. REXX isabit special, since conceptually, it does not use stream
handles, just stream names. Therefore, the stream name isitself also the stream handle, and the
process of opening streams becomes apparently redundant. However, note that a number of
implementations allow explicit opening, and some even require it.

REXX may open streams "on demand" when they are used for the first time. However, this
behavior is not defined in TRL, which says the act of opening the stream is not a part of REXX
[TRL2]. This might be interpreted as open-on-demand or that some system-specific program must
be executed to open a stream.

Although an open-on-demand feature is very practical, there are situations where you need to open
streams in particular modes. Thus, most systems have facilities for explicitly opening afile. Some
REXX interpreters may require you to perform some implementati on-specific operation before
accessing streams, but most are likely to just open them the first time they are referred to in an 1/0
operation.

There are two main approaches to explicit opening of streams. The first uses a non-standard built-in
function normally called OPEN (), which generally takes the name of the file to open as the first
parameter, and often the mode as the second parameter. The second approach is similar, but uses
the standard built-in function STREAM () with aCommand option.

Example: Not closing files

Since there are no open or close operation, a REXX interpreter never knows when to close a stream,
unless explicitly told so. It can never predict when a particular stream isto be used next, so it has to
keep the current read and write positions in case the stream is to be used again. Therefore, you
should aways close the streams when you are finished using them. Failure to do so, will fill the
interpreter with data about unneeded streams, and more serious, it may fill the file table of your
process or system. Asarule, any REXX script that uses more than a couple of streams, should close
every stream after use, in order to minimize the number of simultaneously open streams. Thus, the
following code might eventually crash for some REXX interpreters:

do i=1 to 300
call lineout 'file.'||i, 'this is file number' 1
end

A REXX interpreter might try to defend itself against this sort of open-many-close-none
programming, using of various programming techniques; this may lead to other strange effects.
However, the main responsibility for avoiding thisiswith you, the REXX script programmer.

Note that if astream is already open for reading, and you start writing to it, your implementation

may have to reopen it in order to open for both reading and writing. There are mainly two strategies
for handling this. Either the old file is closed, and then reopened in the new mode, which may leave

178

you with read and write access to another file. Or anew file handle is opened for the new mode,
which may leave you with read and write access to two different files.

These are real-world problems which are not treated by the ideal description of TRL. A good
implementation should detect these situations and raise NOTREADY.

6.7 Closing a Stream

As aready mentioned, REXX does not have an explicit way of opening a stream. Nor does it have
an explicit way of closing a stream. There is one semi-standard method: If you call LINEOUT (),
but omit both the data to be written and the new current write position, then the implementation is
defined to set the current write position to the end-of-file. Furthermore, it isallowed by TRL to do
something "magic" in addition. It is not explicitly defined what this magic is, but TRL suggests that
it may be closing the stream, flushing the stream, or committing changes done previoudly to the
stream.

In SAA, the definition is strengthened to state that the "magic” is closing, provided that the
environment supports that operation.

A similar operating can be performed by calling CHAROUT () with neither data nor a new position.
However, in this case, both TRL and SAA leave it totally up to the implementation whether or not
thefileisto be closed. One can wonder whether the changes for LINEOUT () in SAA with respect
to TRL should also have been done to CHAROUT () , but that this was forgotten.

TRL2 does not indicate that LINEIN () or CHARIN () can be used to close astring. Thus, the
closest one gets to a standard way of closing input filesisto call e.g. LINEOUT () ; although it is
conceptually suspect to call an output routine for an input file. The historical reasons for this
omission are perhaps that flushing output filesisvital , while the concept of flushing isirrelevant
for input files; flushing is an important part of closing afile, and that explains why closing is only
indicated for output files.

Thus, the statement:

call lineout 'myfile.txt'

might be used to close the streammyfile. txt in someimplementations. However, it is not
guaranteed to close the stream, so you cannot depend on this for scripts of maximum portability, but
it's better than nothing. However, note that if it closes the stream, then also the current read position
is affected. If it merely flushes the stream, then only the current write position islikely to be
affected.

6.8 Character-wise and Line-wise I/O

Basically, the built-in REXX library offerstwo strategies of reading and writing streams: line-wise
and character-wise. When reading line-wise, the underlying storage method of the stream must
contain information which describes where each line starts and ends.

179

Some file systems store this information as one or more specia characters; while others structure
the filein anumber of records; each containing asingleline. Thisintroduces a slightly subtle point;
even though a stream foo returns the same datawhen read by LINEIN () on two different
machines; the data read from foo may differ between the same two machines when the stream is
read by CHARIN (), and vice versa. Thisis so because the end-of-line markers can vary between
the two operating systems.

Example: Character-wise handling of EOL

Suppose atext file contains the following three lines (ASCII character set is assumed):

first
second
third

and you first read it line-wise and then character-wise. Assume the following program:

file = 'DATAFILE'
foo = "'
do i=1 while chars(file)>0
foo = foo || c2x(charin(file))
end
say foo

When thefileisread line-wise, the output isidentical on all machines, i.e. the three lines shown
above. However, the character-wise reading will be dependent on your operating system and itsfile
system, thus, the output might e.g. be any of:

66 69 72 73 74 73 65 6F 63 6E 64 74 68 69 72 64 66 69 72 73
74 OA

66 69 72 73 74 0A
73 65 6F 63 6E 64 OA
74 68 69 72 64 0A

66 69 72 73 74 0D OA
73 65 6F 63 6E 64 0D OA
74 68 69 72 64 0D OA

If the machine uses records to store the lines, the first one may be the result; here, only the datain
the lines of thefileisreturned. Note that the boxes in the output are put around the data generated
by the actua line contents. What is outside the boxes is generated by the end-of-line character
Sequences.

The second output lineis typical for Unix machines. They use the newline ASCII character asline
separator, and that character is read immediately after each line. Thelast lineistypical for MS-
DOS, where the line separator character sequence is a carriage return following by a newline
(ASCIl '0D'x and ' 0A ' x).

180

For maximum portability, the line-wise built-in functions (LINEIN (), LINEOUT () and

LINES ()) should only be used for line-wise streams. And the character-wise built-in functions
(CHARIN (), CHAROUT () and CHARS ()) should only be used for character-wise data. You should
in general be very careful when mixing character- and line-wise datain a single stream; it does
work, but may easily lead to portability problems.

The difference between character- and line-wise streams are roughly equivalent to the difference
between binary and text streams, but the two concepts are not totally equivalent. In abinary file, the
dataread is the actual data stored in thefile, whilein atext file, the character sequences used for
denoting end-of-line and end-of-file markers may be trandated to actions or other characters during
reading.

The end-of-file marker may be differently implemented on different systems. On some systems, this
marker isonly implicitly present at the end-of-file--which is calculated from the file size (e.g.

Unix). Other systems may put a character signifying end-of-file at the end (or even in the middle) of
thefile (e.g. <Ctrl-Z> for MS-DOS). These concepts vary between operating systems, interpreters
should handle each concept according to the customs of the operating system. Check the
implementation-specific documentation for further information. In any case, if the interpreter treats
aparticular character as end-of-file, then it only gives special treatment to this character during line-
wise operations. During character-wise operations, no characters have special meanings.

6.9 Reading and Writing

Four built-in functions provide line- and character-oriented stream reading and writing capabilities:
CHARIN (), CHAROUT (), LINEIN (), LINEOUT ().

[CHARIN ()]
isabuilt-in function that takes up to three parameters, which are all optional: the name of
the stream to read from, the start point, and the number of characters to read. The stream
name defaults to the default input stream, the start point defaults to the current read position,
the number of characters to read defaults to one character. Leave out the second parameter in
order to avoid al repositioning. During execution, data is read from the stream specified,
and returned as the return value.

[LINEIN()]
isabuilt-in function that takes three parameters too, and they are equivalent to the
parameters of CHARIN () . However, if the second parameter is specified, it refer to aline
position, rather than a character position; it refers to the character position of the first
character of that line. Further, the third parameter can only be 0 or 1, and refersto the
number of linesto read; i.e. you cannot read more than onelineineach call. Thelinereadis
returned by the function, or the nullstring if no reading was requested.

[LINEOUT ()]
isabuilt-in function that takes three parameters too, the first is the name of the stream to
write to, and defaults to the default output stream. The second parameter is the data to be
written to the file, and if not specified, no writing occurs. The third parameter isaline-
oriented position in the file; if the third parameter is specified, the current position is
repositioned at before the data (if any) iswritten. If datais written, an end-of-line character
sequence is appended to the output stream.

[CHAROUT ()]
isabuilt-in function that is used to write charactersto afile. Itisidentical to LINEOUT (),

181

except that the third parameter refers to a character position, instead of aline position. The
second difference is that an end-of-line character sequence is not appended at the end of the
data written.

Example: Counting lines, words, and characters

The following REXX program emul ates the core functionality of the wc program under Unix. It
counts the number of lines, words, and charactersin afile given as the first argument.

file = arg(1l)
parse value 0 0 0 with lines words chars
do while lines (file)>0

line = linein(file)

lines = lines + 1

words = words + words (line)

chars = chars + length(line)
end

say 'lines='lines 'words='words 'chars='chars

There are some problems. For instance, the end-of-line characters are not counted, and a last
improperly terminated line is not counted either.

182

6.10 Determining the Current Position

Standard REXX does not have any seek call that returns the current position in a stream. Instead, it
provides two calls that returns the amount of data remaining on a stream. These two built-in
functionsare LINES () and CHARS ().

¢ TheLINES () built-in function returns the number of complete lines|eft on the stream given as
itsfirst parameter. The term "complete lines* does not really matter much, since an
implementation can assume the end-of-file to implicitly mean an end-of-line.

¢ TheCHARS () built-in function returns the number of character left in the stream given asits
first parameter.

Thisis one of the concepts where REXX /O does not map very well to C I/O and vice versa. While
REXX reports the amount of data from the current read position to the end of stream, C reports the
amount of data from the start of the file to the current position. Further, the REXX method only
works for input streams, while the C method works for both input and output files. On the other
hand, C has no basic constructs for counting remaining or reposition at lines of afile.

Example: Retrieving current position

So, how does one find the current position in afile, when only allowed to do normal repositioning?
Thetrick isto reposition twice, as shown in the code below.

ftell: procedure
parse arg filename

now = chars(filename)
call charin filename, 0, 1
total = chars(filename)

call charin filename, 0, total-now
return total-now

Unfortunately, there are many potential problems with this code. First, it only works for input files,
since thereis no equivalent to CHARS () for output files. Second, if the file is empty, none of the
repositioning work, sinceit isillegal to reposition at or after end-of-file for input files--and the end-
of-fileisthe first position of the file. Third, if the current read position of thefileis at the end of file
(e.g. all characters have been read) it will not work for similar reasons as for the second case. And
fourth, it only works for persistent files, since transient files do not allow repositioning.

Example: Improved f£tell function

An improved version of the code for the fte11 routine (given above), which tries to handle these
problemsis:

183

ftell: procedure
parse arg filename
signal on notready name not persist
now = chars(filename)
signal on notready name is empty
call charin filename, 0, 1
total = chars|()
if now>0 then
call charin filename, 0, total-now+l
else if total>0 then
call charin filename, 1, total
else
nop /* empty file, should have raised NOTREADY */
return total-now+l

not presist: say filename 'is not persistent'; return O
is empty: say filename 'is empty'; return O

The same method can be used for line-oriented 1/0 too, in order to return the current line number of
an input file. However, a potential problem in that case is that the routine leaves the stream
repositioned at the start of the current line, even if it wasinitialy positioned to the middle of aline.
In addition, the line-oriented version of this fte11 routine may prove to be fairly inefficient, since
the interpreter may have to scan the whole file twice for end-of-line character sequences.

6.11 Positioning Within a File

REXX supports two strategies for reading and writing streams: character-wise, and line-wise, this
section describes how a program can reposition the current positions for each these strategies. Note
that positioning is only allowed for persistent streams.

For each open file, thereis a current read position or a current write position, depending on whether
the file is opened for reading or writing. If the file is opened for reading and writing simultaneously,
it has both a current read position and a current write position, and the two are independent and in
genera different. A position within afileisthe sequence number of the byte or line that will be read
or written in the next such operation.

Note that REXX starts numbering at one, not zero. Therefore, the first character and the first line of
a stream are both numbered one. This differs from several other programming languages, which
starts numbering at zero.

Just after a stream has been opened, the initial values of the current read position isthe first
character in the stream, while the current write position is the end-of-file, i.e. the position just after
the last character in the stream. Then, reading will return the first character (or line) in the stream,
and writing will append a new character (or line) to the stream.

These initial valuesfor the current read and write positions are the default values. Depending on

your REXX implementation, other mechanisms for explicitly opening streams (e.g. through the
STREAM () built-in function) may be provided, and may set other initial valuesfor these positions.

184

See the implementation-specific documentation for further information.

When setting the current read position, it must be set to the position of an existing character in the
stream; i.e. a positive value, not greater than the total number of charactersin the stream. In
particular, it isillegal to set the current read position to the position immediately after the last
character in the stream; athough thisislegal in many other programming languages and operating
systems, where it is known as "seeking to the end-of-file".

When setting the current write position, it too must be set to the position of an existing character in
the stream. In addition, and unlike the current read position, the current write position may also be
set to the position immediately following the last character in the stream. Thisis known as
"positioning at the end-of-file", and it istheinitial value for the current write position when a
stream is opened. Note that you are not allowed to reposition the current write position further out
beyond the end-of-file--which would create a"hol€e" in the stream--even though thisis allowed in
many other languages and operating systems.

Depending on your operating system and REXX interpreter, repositioning to after the end-of-file
may be allowed as an extension, although it isillegal according to TRL2. You should avoid this
technique if you wish to write portable programs.

REXX only keeps one current read position and one current write position for each stream. So both
line-wise and character-wise reading as well as positioning of the current read position will operate
on the same current read position, and similarly for the current write position.

When repositioning line-wise, the current write position is set to the first character of theline
positioned at. However, if positioning character-wise so that the current read position isin the
middle of alinein thefile, a subsequent call to LINEIN () will read from (and including) the
current position until the next end-of-line marker. Thus, LINEIN () might under some
circumstances return only the last part of aline. Similarly, if the current write position has been
positioned in the middle of an existing line by character-wise positioning, and LINEOUT () is
called, then the line written out becomes the last part of the line stored in the stream.

Note that if you want to reposition the current write position using a line count, the stream may
have to be open for read, too. Thisis because the interpreter may have to read the contents of the
stream in order to find where the lines start and end. Depending on your operating system, this may
even apply if you reposition using character count.

Example: Repositioning in empty files

Since the current read position must be at an existing character in the stream, it isimpossible to
reposition in or read from an empty stream. Consider the following code:

filename = '/tmp/testing'
call lineout filename,, 1 /* assuming truncation */
call linein filename, 1, O

One might believe that this would set the current read and write positions to the start of the stream.

However, assume that the LINEOUT () cal truncates thefile, so that it is zero byteslong. Then,
the last call can never be legal, since thereis no bytein thefile at which it is possible to position the

185

current read position. Therefore, aNOTREADY condition is probably raised.
Example: Relative repositioning

It israther difficult to reposition a current read or write position relative to the current position. The
only way to do this within the definition of the standard is to keep a counter which tells you the
current position. That is, if you want to move the current read position five lines backwards, you
must do it like this:

filename = '/tmp/data’
linenum = 0 ;
say linein(filename,10); linenum = 10
do while random(100)>3
say linein(filename); linenum = linenum+l
end
call linein(filename, linenum-5,0); linenum = linenum-5

Here, the variable 1inenum isupdated for each time the current read position is atered. This may
not seem to difficult, and it is not in most cases. However, it is nearly impossible to do thisin the
general case, since you must keep an account of both line numbers and character numbers. Setting
one may invalidate the other: consider the situation where you want to reposition the current read
position to the 10" character before the 100™ line in the stream. Except from mixing line-wise and
character-wise 1/0O (which can have strange effects), thisis nearly impossible. When repositioning
character-wise, the line number count isinvalidated, and vice versa.

The "only" proper way of handling thisisto allow one or more (non-standard) STREAM () built-in
function operations that returns the current character and line count of the stream in the interpreter.

Example: Destroying linecount

This example shows how overwriting text to the middle of afile can destroy the line count. In the
following code, we assume that the file foobar exists, and containsten lineswhichare"first
line", second line,éc.upto”"tenth line". Then consider the following code:

filename = 'foobar'

say linein(filename, 5) /* says 'fifth line' */

say linein(filename) /* says 'sixth line' */

say linein(filename) /* says 'seventh line' */

call lineout filename, 'This is a very long line', 5

say linein(filename, 5) /* says 'This is a very long line'
*/

say linein (filename) /* says 'venth line' */

say linein (filename) /* says 'eight line' */

Asyou can see from the output of this example, the call to LINEOUT () insertsalong line and
overwrites the fifth and sixth lines completely, and the seventh line partially. Afterward, the sixth
lineisthe remaining part of the old seventh line, and the new seventh lineisthe old eighth line, etc.

186

6.12 Errors: Discovery, Handling, and Recovery

TRL2 contains two important improvements over TRL1 in the area of handling errorsin stream |/O:
the NOTREADY condition and the STREAM () built-in function. The NOTREADY condition is
raised whenever a stream 1/0O operation did not succeed. The STREAM () function is used to

retrieve status information about a particular stream or to execute a particular operation for a
stream.

You can discover that an error occurred during an 1/O operation in one of the following ways: a) it
may trigger a SYNTAX condition; b) it may trigger aNOTREADY condition; or ¢) it may just not
return that data it was supposed to. Thereisno clear border between which situations should trigger
SYNTAX and which should trigger NOTREADY. Errorsin parameters to the 1/0 functions, like a
negative start position, is clearly a SYNTAX condition, while reading off the end-of-file is equally
clearly aNOTREADY condition. In between lay more uncertain situations like trying to position the
current write position after the end-of-file, or trying to read a non-existent file, or using an illegal
file name.

Some situations are likely to be differently handled in various implementations, but you can assume
that they are handled as either SYNTAX or NOTREADY. Defensive, portable programming requires
you to check for both. Unfortunately, NOTREADY is not allowed in TRL1, so you have to avoid that
condition if you want maximum compatibility. And due to the very lax restrictions on
implementations, you should always perform very strict verification on all data returned from any
file 1/O built-in function.

If neither are trapped, SYNTAX will terminate the program while NOTREADY will be ignored, so the
implementor’s decision about which of these to use may even depend on the severity of the problem
(i.e. if the problem issmall, raising SYNTAX may be alittle too strict). Personally, | think SYNTAX
should be raised in this context only if the value of a parameter is outside its valid range for all
contexts in which the function might be called.

Example: General NOTREADY condition handler

Under TRL2 the "correct” way to handle NOTREADY conditions and errors from /O operationsis
unfortunately very complex. It is shown in this example, in order to demonstrate the procedure:

187

myfile = "MYFILE.DAT'
signal on syntax name syn handler
call on notready name IO handler
do i=1 to 10 until res=0
res = lineout (myfile, 'line #'1i)
if (res=0) then
say 'Call to LINEOUT () didn"t manage to write out

data'
end
exit
IO handler:
syn _handler:
file = condition('D")
say condition('C') 'raised for file' file 'at line'
sigl':'
say ' ' sourceline(sigl)
say ' State='stream(file,'S') 'reason:' stream(file, 'D'")
call lineout(condition('D')) /* try to close */
if condition('C')=='SYNTAX' then
exit 1
else
return

Note the double checking in this example: first the condition handler is set up to trap any
NOTREADY conditions, and then the return code from LINEOUT () ischecked for each call.

Asyou can see, thereis not really that much information that you can retrieve about what went
wrong. Some systems may have additional sources from which you can get information, e.g. special
commands for the STREAM () built-in function, but these are non-standard and should be avoided
when writing compatible programs.

6.13 Common Differences and Problems with Stream 1I/O

This section describes some of the common traps and pitfalls of REXX 1/0.

6.13.1 Where Implementations are Allowed to Differ

TRL israther relaxed in its specifications of what an interpreter must implement of the 1/0 system.
It recognizes that operating systems differ, and that some details must be |eft to the implementor to
decide, if REXX isto be effectively implemented. The parts of the I/O subsystem of REXX where
implementations are allowed to differ, are:

¢ Thefunctions LINES () and CHARS () are not required to return the number of lines or
charactersleft in astream. TRL saysthat if it isimpossible or difficult to cal culate the numbers,
these functions may return 1 unlessit is absolutely certain that there are no more data left. This
leads to some rather kludgey programming techniques.

¢+ Implementations are allowed to ignore closing streams, since TRL does not specify away to do

188

this. Often, the closing of streamsisimplemented as a command, which only makesit more
incompatible.

Check the implementation-specific documentation before using the function LINEOUT (file)
for closing files.

The difference in the action of closing and flushing afile, can make a REXX script that works
under one implementation crash under another, so thisfeature is of very limited value if you are
trying to write portable programs.

TRL says that because the operating system environments will differ alot, and an efficient and
useful interpreter is the most important goal, implementations are allowed to deviate from the
standard in any respect necessary in the domain of I/0O [TRLZ2]. Thus, you should never assume
anything about the I/O system, as the "rules’ listed in TRL are only advisory.

6.13.2 Where Implementations might Differ anyway

In the section above, some areas where the standard allows implementations to differ arelisted. In
an ideal world, that ought to be the only traps that you should need to look out for, but
unfortunately, the world is not ideal. There are several areas where the requirements set up by the
standard is quite high, and where implementations are likely to differ from the standard.

These areas are:

¢

Repositioning at (for the current write position) or beyond the end-of-file may be allowed. On
some systems, to prohibit that would require alot of checking, so some systemswill probably
skip that check. At least for some operating systems, the act of repositioning after end-of-fileis
auseful feature.

Under Unix, it can be used for creating a dynamically sized random access file; do not bother
about how much space is allocated for the file, just position to the correct "sloth” and write the
datathere. If the datafile is sparse, holes might occur in the file; that is parts of the file which
has not been written, and which is all zeros (and which are therefore not stored on disk.

Some implementations will use the same position for both the current read position and the
current write position to overcome these implementations. Whenever you are doing aread, and
the previous operation was awrite (or vice versa), it is may prove useful to reposition the
current read (or write) position.

There might be a maximum linesize for your REXX interpreter. At least the 50K b limit on string
length may apply.

Handling the situation where another program writes datato afile which is used by the REXX
interpreter for reading.

6.13.3 LINES () and CHARS () are Inaccurate

Because of the large differences between various operating systems, REXX allows some fuzz in the
implementation of the LINES () and CHARS () built-in functions. Sometimes, it isdifficult to
calculate the number of lines or characters in a stream; generally because the storage format of the

189

file often requires alinear search through the whole stream to determine that number. Thus, REXX
allows an implementation to return the value 1 for any situation where the real number is difficult
or impossible to determine. Effectively, an implementation can restrict the domain of return values
for these two functions only 1 and 0 from these two functions.

Many operating systems store lines using a specia end-of-line character sequence. For these
systems, it is very time-consuming to count the number of linesin afile, as the file must be scanned
for such character sequences. Thus, it is very tempting for an implementor to return the value 1 for
any situation where there are more than zero lines left.

A similar situation arises for the number of characters left, although it is more common to know this
number, thusit is generally a better chance of CHARS () returning the true number of characters | eft
than LINES () returning the true number of lines | eft.

However, you can be fairly sure that if an implementation returns a number greater than 1, then that
number is the real number of lines (or characters) left in the stream. And simultaneoudly, if the
number returned is 0, then there is no lines (or characters) left to be read in the stream. But if the
number is 1, then you will never know until you have tried.

Example: File reading idiom

This example shows a common idiom for reading all contents of afile into REXX variables using
the LINES () and LINEIN () built-in functions.

i =1
signal on notready
lleft = lines(file)
do while 1left>0

do i=i to i+lleft

line.i = linein(file)
end
lleft = lines(file)
end
notready:
lines.0 = i-1

Here, the two nested loops iterates over al the data to be read. The innermost |oop reads all data
currently available, while the outermost loop checks for more available data. |mplementations
havingaLINES () that returnonly 0 and 1 will generally iterate the outermost loop many times;
while implementations that returns the "true" number from LINES () generally only iterates the
outermost loop once.

Thereisonly one placeinthiscodethat LINEIN () iscaled. The I variableisincremented at
only one place, and the variable LINES . 0 is set in one clause, too. Some redundancy can be
removed by setting the WHILE expression to:

do while word(value('lleft',lines(file)) 1lleft,2)>0

190

The two assignmentsto the LLEFT variable must be removed. This may look more complicated,
but it decreases the number of clauses having acall to LINES () from two till one. However, itis
less certain that this second solution is more efficient, since using VALUE () built-in function can
be inefficient over "normal" variable references.

6.13.4 The Last Line of a Stream

How to handle the last line in a stream is sometimes a problem. If you use a system that stores end-
of-lines as specia character sequences, and the last part of the data of a stream is an unterminated
line, then what is returned when you try to read that part of data?

There are three possible solutions: First, it may interpret the end-of-file itself as an implicit end-of-
line, in this case, the partial part of the lineisreturned, asif it was properly terminated. Second, it
may raise the NOTREADY condition, since the end-of-file was encountered during reading. Third, if
there is any chance of additional data being appended, it may wait until such data are available. The
second and third approaches are suitable for persistent and transient files, respectively.

The first approach is sometimes encountered. It has some problems though. If the end of a stream
contains the dataABC<NL>XYZ, then it might return the string XYz asthe last line of the stream.
However, suppose the last line was an empty line, then the last part of the stream would be:
ABC<NL>. Few would argue that thereis any line in this stream after the line ABC. Thus, the
decision whether the end-of-file is an implicit end-of-line depends on whether the would-be last line
has zero length or not.

An pragmatic solution isto let the end-of-file only be an implicit end-of-file if the characters
immediately in front of it are not an explicit end-of-line character sequence.

However, TRL gives some indications that an end-of-file is not an implicit end-of-line. It says that
LINES () returnsthe number of complete lines left, and that LINEIN () returnsacomplete line.
On the other hand, the end-of-line sequence is not rigidly defined by TRL, so an implementor is
amost free to define end-of-line in just about any terms that are comfortable. Thus, the last line of a
stream may be a source of problem if it is not explicitly terminated by an end-of-line.

6.13.5 Other Parts of the I/0O System

This section lists some of the other parts of REXX and the environments around REXX that may be
considered a part of the 1/0 system.

[Stack.]
The stack be used to communicate with external environments. At the REXX side, the
interface to the stack isthe instructions PUSH, PULL, PARSE PULL, and QUEUE; and the
built-in function QUEUED () . These can be used to communicate with external programs by
storing data to be transferred on the stack.

[The STREAM() built-in function.]
This function is used to control various aspects about the files manipulated with the other
standard 1/0 functions. The standard says very little about this function, and leavesit up to
the implementor to specify the rest. Operations like opening, closing, truncating, and
changing modes

[The SAY instruction.]
The SAY instruction can be used to write data to the default output stream. If you use

191

redirection, you can indirectly use it to write data to afile.

[The ADDRESS instruction.]
The ADDRESS instruction and commands can be used to operate on files, depending on the
power of your host environments and operating system.

[The VALUE() built-in function.]
The function VALUE () , when used with three parameters, can be used to communicate with
external host environments and the operating system. However, this depends on the
implementation of your interpreter.

[SAA API.]
The SAA API provides several operations that can be used to communicate between
processes. In general, SAA API allows you to perform the operations listed above from a
binary program written in alanguage other than REXX.

And of course, I/0O is performed whenever a REXX program or external function is started.

6.13.6 Implementation-Specific Information

This section describes some implementations of stream I/O in REXX. Unfortunately, this has
become a very large section, reflecting the fact that stream 1/O is an area of many system-specific
solutions.

In addition, the variations within this topic are rather large. Regina implements a set of functions
that are very closeto that of TRL2. The other extreme are ARexx and BRexx, which contain a set
of functions which isvery close to the standard I/O library of the C programming language.

6.13.7 Stream 1/O in Regina 0.07a

Regina implements stream 1/0 in afashion that closely resembles how it is described in TRL2. The
following list gives the relevant system-specific information.

[Names for standard streams.]
Regina uses <stdout> and <stdin> as names for the standard output and input streams.
Note that the angle brackets are part of the names. You may also access the standard error
stream (on systems supporting this stream) under the name <stderr>. In addition, the
nullstring is taken to be equivalent to an empty first parameter in the I/O-related built-in
functions.

[Implicit opening.]
Regina implicitly opens any file whenever it is first used.

If the first operation isaread, it will be opened in read-only mode. If the first operationisa
write, it is opened in read-write mode. In this case if the read-write opening does not
succeed, thefileis opened in write-only mode. If the file exists, the opening is non-
destructive, i.e. that the fileis not truncated or overwritten when opened, elseit is created if
opened in read-write mode.

If you name afile currently open in read-only mode in awrite operation, Regina closesthe
file, and reopensit in read-write mode. The only exception iswhen you call LINEQUT ()
with both second and third arguments unspecified, which always closes afile, both for
reading and writing. Similarly, if the file was opened in write-only mode, and you useitin a
read operation, Regina closes and reopens in read-write mode.

192

Thisimplicit reopening is enabled by default. You can turn it off by unsetting the extension
ExplicitOpen.

[Separate current positions.]
The environment in which Regina operates (ANSI C and POSIX) does not allow separate
read and write positions, but only supplies one position for both operations. Regina handles
this by maintaining the two positions internally, and move the "real" current position back
and forth depending on whether aread or write operation is next.

[Swapping out file descriptors.]
In order to defend itself against "open-many-close-none" programming, Regina tries to
"swap out” files that have been unused for some time. Assume that your operating system
limits Regina to 100 simultaneously open files; when your try to open your 1014 file,
Regina closes the least recently used stream, and recycles its descriptor for the new file.
You can enable or disable this recycling with the SwapFilePtr extension.

During this recycling, Regina only closes the file in the operating system, but retains al
vital information about the file itself. If you re-access the file later, Regina reopensit, and
positions the current read and write positions at the correct (i.e. previous) positions. This
introduces some uncertainties into stream processing. Renaming afile affectsit only if it
gets swapped out. Since the swap operation is something the users do not see, it can cause
some strange effects.

Regina will not allow atransient stream to be swapped out, since they often are connected
to some sort of active partner in the other end, and closing the file might kill the partner or
make it impossible to reestablish the stream. So only persistent files are swapped out. Thus,
you can still fill thefile table in Regina.

[Explicit opening and closing.]
Regina allows streams to be explicitly opened or closed through the use of the built-in
function STREAM () . The exact syntax of thisfunction is described in section stream. Old
versions of Regina supported two non-standard built-in functions OPEN () and CLOSE ()
for these operations. These functions are still supported for compatibility reasons, but might
be removed in future releases. Their availability is controlled by the OpenBi f and
CloseBif extensions.

[Truncation after writing lines.]
If you reposition line-wise the current write position to the middle of afile, Regina
truncates the file at the new position. This happens whether data is written during the
LINEOUT () or not. If not, the file might contain half aline, some lines might disappear,
and the linecount would in general be disrupted. The availability of thisbehavior is
controlled by LineOutTrunc, which isturned on by default.

Unfortunately, the operation of truncating afileis not part of POSIX, and it might not exist
on al systems, so on some rare systems, this truncating will not occur. In order to be ableto
truncate afile, your machine must havethe ftruncate () systemcal in C. If you don't

have this, the truncating functionality is not available.
[Caching info on lines left.]

When Regina executes the built-in function LINES () for a persistent stream, it caches the
number of lines|eft as an attribute to the stream. In subsequent callsto LINEIN (), this
number is updated, so that subsequent callsto LINES () can retrieve the cached number
instead of having to re-scan the rest of the stream, provided that the number is still valid.

193

Some operations will invalidate the count: repositioning the current read position; reading
using the character oriented /O, i.e. CHARIN () ; and any write operation by the same
interpreter on the stream. Ideally, any write operation should invalidate the count, but that
might require alarge overhead before any operation, in order to check whether the file has
been written to by other programs.

This functionality can be controlled by the extension called CacheLineNo, whichis
turned on by default. Note that if you turn that off, you can experience a serious decrease in
performance.

The following extra built-in functions relating to stream I/O are defined in Regina. They are
provided for extra support and compatibility with other systems. Their support may be discontinued
in later versions, and they are likely to be moved to alibrary of extra support.

CLOSE (streamid)

Closes the stream named by streamid. This stream must have been opened by implicit open or by
the OPEN function call earlier. The function returns 1 if there was any fileto close, and 0 if thefile
was not opened. Note that the return value does not indicate whether the closing was successful.
You can use the extension named C1loseBi £ with the OPTIONS instruction to select or remove
thisfunction. Thisfunction is now obsolete, instead you should use:

STREAM(streamid, 'Command', 'CLOSE')

CLOSE(myfile) 1 if stream was open
CLOSE('NOSUCHFILE) 0 if stream didn't exist

OPEN (streamid, access)

Opens the stream named streamid with the access access. If accessis not specified, the access R
will be used. access may be the following characters. Only the first character of the accessis
needed.

[R]
(Read) Open for read access. The file pointer will be positioned at the start of thefile, and
only read operations are allowed.

[W]
(Write) Open for write access and position the current write position at the end of thefile.
An error isreturned if it was not possible to get appropriate access.

The return value from this function is either 1 or 0, depending on whether the named stream isin
opened state after the operation has been performed.

194

Note that if you open thefiles"foobar" and". /foobar" they will point to the same physical
file, but Regina interprets them as two different streams, and will open ainternal file descriptor for
each one. If you try to open an already open stream, using the same name, it will have no effect.

You can use the extension OpenBi f with the OPTTONS instruction to control the availability of
thisfunction. Thisfunction is now obsolete, but is still kept for compatibility with other interpreters
and older versions of Regina. Instead, with Regina you should use:

STREAM(streamid, 'C', 'READ'|'WRITE'|'APPEND'|'UPDATE')

OPEN(myfile, 'write) 1 maybe, if successful
OPEN(passwd, 'Write') 0 maybe, if no write access
' OPEN(DATA', 'READ') 0 maybe, if successful

The return value from this function is either 1 or 0, depending on whether the named stream isin
opened state after the operation has been performed.

6.13.8 Functionality to be Implemented Later

This section lists the functionality not yet in Regina, but which isintended to be added later. Most
of these are fixes to problems, compatibility modes, etc.

[Indirect naming of streams.]
Currently, streams are named directly, which is a convenient. However, there are afew
problems: for instance, it is difficult to write to afile which nameis <stdout>, smply
because that is areserved name. Tofix this, an indirect naming scheme will be provided
through the STREAM () < built-in function. The functionality will resemble the OPEN ()
built-in function of ARexx.

[Consistence in filehandle swapping.]
When afile handle is currently swapped out in order to avoid filling the system file table,
very little checking of consistency is currently performed. At least, vital information about
the file should be retained, such as the inode and file system for Unix machines retrieval by
the fstat () cal. When thefileis swapped in again, this information must be checked
against the file which is reopened. If there is a mismatch, NOTREADY should be raised.
Similarly, when reopening afile because of a new access mode is requested, the same
checking should be performed.

[Files with holes.]
Regina will be changed to allow it to generate files with holes for system where thisis
relevant. Although standard REXX does not allow this, it isavery common programming
idiom for certain systems, and should be allowed. It will, however, be controllable through a
extension called SparseFiles.

6.13.9 Stream I/O in ARexx 1.15

ARexx differs considerably from standard REXX with respect to stream I/O. In fact, none of the
standard stream functionality of REXX is available in ARexx. Instead, a completely distinct set of
functions are used. The differences are so big, that it is useless to describe ARexx stream I/O in
terms of standard REXX stream 1/0O, and everything said so far in this chapter isirrelevant for
ARexx. Therefore, we explain the ARexx functionality from scratch.

195

All inall, the ARexx file I/O interface resembles the functions of the Standard C 1/0O library,
probably because ARexx iswrittenin C, and the ARexx /O functions are "just" interfaces to the
underlying C functions. You may want to check up the documentation for the ANSI C 1/O library as
described in [ANSIC], [KR], and [PJPlauger].

ARexx uses atwo level naming scheme for streams. The file names are bound to a stream name
using the OPEN () built-in function. In all other I/O functions, only the stream name is used.

OPEN (name, filename[,mode])

You usethe OPEN () built-in function to open a stream connected to afile called filenamein
AmigaDOS. In subsequent I/O calls, you refer to the stream as name. These two names can be
different.

The name parameter cannot already be in use by another stream. If so, the OPEN () function fails.
Note that the name parameter is case-sensitive. The filename parameter is not strictly case-sensitive:
the case used when creating anew fileis preserved, but when referring to an existing file, the name
Is case-insensitive. Thisisthe usual behavior of AmigaDOS.

If any of the other I/O operations uses a stream name that has not been properly opened using
OPEN () , that operation fails, because ARexx has no auto-open-on-demand feature.

The optional parameter mode can be any of Read, Write, or Append. The mode Read opensan
existing file and sets the current position to the start of the file. The mode 2Append isidentical to
Read, but sets the current positions to the end-of-file. The mode write createsanew file, i.e. if a
file with that name already exidts, it is deleted and anew fileis created. Thus, withWwrite you
always start with an empty file. Note that the terms "read," "write," and "append" are only remotely
connected to the mode in which the file is opened. Both reading and writing are allowed for al of
these three modes; the mode names only reflect the typical operations of these modes.

Theresult from OPEN () isaboolean value, which is 1 if afile by the specified name was
successfully opened during the OPEN () call, and 0 otherwise.

The number of simultaneously open filesis no problem because AmigaDOS allocates files handles
dynamically, and thus only limited by the available memory. One system managed 2000
simultaneously open files during a test.

OPEN('infile, ‘work:DataFil€) 1 if successful
OPEN(‘work’, 'RAM:FooBar', 'Read’) 0 if didn't exist
OPEN('output’, TmpFile', 'W") 1 (re)createsfile

196

CLOSE (name)

You use the CLOSE () built-in function to close a stream. The parameter name must match the first
parameter in acal to OPEN () earlier in the same program, and must refer to an open stream. The

return value is a boolean value that reflects whether there was afile to close (but not whether it was
successfully closed).

CLOSE('infile) 1 if stream was previously open
CLOSE('outfile) 0 if stream wasn't previously open
WRITELN (name, string)

TheWRITELN () function writes the contents of string as aline to the stream name. The name
parameter must match the value of the first parameter in an earlier call to OPEN () , and must refer
to an open stream. The data written is all the charactersin string immediately followed by the
newline character (ASCII <Ctrl-J> for AmigaDQOS).

The return value is the number of characters written, including the terminating newline. Thus, a
return value of 0 indicates that nothing was written, while a value which is one more than the
number of charactersin string indicates that all data was successfully written to the stream.

When writing aline to the middle of a stream, the old contents is written over, but the stream is not
truncated; there is no way to truncate a stream with the ARexx built-in functions. This overwriting
can leave partial linesin the stream.

WRITELN('tmp', 'Hello, world!") 14 if successful
WRITELN('work’, 'Hi there) 0 nothing was written
WRITELN('tmp', 'Hi there') 5 partialy successful

WRITECH (name, string)

TheWRITECH () functionisidentical to WRITELN () , except that the terminating newline
character is not added to the datawritten out. Thus, WRITELN () issuitable for line-wise output,
whileWRITECH () isuseful for character-wise output.

WRITECH('tmp', 'Hello, world!") 13 if successful
WRITECH(‘'work’, 'Hi there) 0 nothing was written
WRITECH('tmp', 'Hi there) 5 partialy successful

197

READLN (name)

The READLN () function reads aline of datafrom the stream referred to by name. The parameter
name must match the first parameter of an earlier call to OPEN (), i.e. it must be an open stream.

The return valueis a string of characters which corresponds to the characters in the stream from and
including the current position forward to the first subsequent newline character found. If no newline
character is found, the end-of-file isimplicitly interpreted as a newline and the end-of-file state is
set. However, the data returned to the user never contains the terminating end-of-line.

To differ between the situation where the last line of the stream was implicitly terminated by the
end-of-file and where it was explicitly terminated by an end-of-line character sequence, use the
EOF () built-in function. The EOF () returns 1 inthe former case and 0 in the latter case.

Thereisalimit in ARexx on the length of linesthat you can read in one call to READLN () . If the
length of the line in the stream is more than 1000 characters, then only the first 1000 characters are
returned. The rest of the line can be read by additional READLN () and READCH () calls. Note that
whenever READLN () returns astring of exactly 1000 characters, then no terminating end-of-line
was found, and anew call to READLN () must be executed in order to read the rest of the line.

READLN('tmp") Hello maybe
world!

\ READLN('work") \ maybe, if unsuccessful

READCH (name|[, length])

The READCH () built-in function reads characters from the stream named by the parameter name,
which must correspond to the first parameter in a previous call to OPEN () . The number of

charactersread is given by length, which must be a non-negative integer. The default value of
lengthis1.

The value returned is the data read, which has the length corresponding to the length parameter if no
errors occurred.

in ARexx for the length of strings that can be read in one call to READCH () . Thelimit is 65535
bytes, and is alimitation in the maximum size of an ARexx string.

READCH(tmp',3) Hel maybe
READCH('tmp") I maybe
\ READCH('tmp',6) \ o worl maybe

198

EOF (name)

The EOF () built-in function tests to see whether the end-of-file has been seen on the stream

specified by name, which must be an open stream, i.e. the first parameter in aprevious call to
OPEN ().

Thereturn valueis 1 if the stream isin end-of-file mode, i.e. if aread operation (either READLN ()
or READCH ()) has seen the end-of-file during its operation. However, reading the last character of
the stream does not put the stream in end-of-file mode; you must try to read at least one character
past the last character. If the stream is not in end-of-file mode, the return valueis 0.

Whenever the stream is in end-of-file mode, it stays there until acall to SEEK () ismade. No read
or write operation can remove the end-of-file mode, only SEEK () (and closing followed by
reopening).

\ EOF('tmp") \ 0 maybe

\ EOF(‘work’) \ 1 maybe

SEEK (name, offset[,mode])

The SEEK () built-in function repositions the current position of the file specified by the parameter
name, which must correspond to an open file, i.e. to the first parameter of a previous call to

OPEN () . The current position in the file is set to the byte referred to by the parameter offset. Note
that offset is zero-based, so the first byte in the file is numbered 0. The value returned is the current
position in the file after the seek operation has been carried through, using Beginning mode.

If the current position is attempted set past the end-of-file or before the beginning of the file, then
the current position is not moved, and the old current position is returned. Note that it islegal to
position at the end-of-file, i.e. the position immediately after the last character of thefile. If afile
contains 12 characters, the valid range for the resulting new current position is 0-12.

The last parameter, mode, can take any of the following values:

Beginning, Current, or End. It specify the base of the seeking, i.e. whether it isrelative to the
first byte, the end-of-file position, or the old current position. For instance: for a 20 byte file with
current position 3, then offset 7 for base Beginning isequivalent to offset -13 for base End and
offset 4 for Current. Note that only the first character of the mode parameter is required, the rest
of that parameter isignored.

SEEK ('tmp', 12, 'B") 12 if successful

SEEK(‘tmp', -4, 'Begin’) 12 if previoudly at 12

SEEK ('tmp', -10, 'E) 20 if lengthis30

SEEK ('tmp', 5) 17 if previoudly at 12

SEEK ('tmp', 5, 'Celcius) 17 only first character in mode matters

199

\SEEK('tmp‘, 0, 'B") \ 0 awaysto start of file

6.13.10 Main Differences from Standard REXX

Now, as the functionality has been explained, let me point out the main conceptual differencesfrom
standard REXX; they are:

[Current position.]
ARexx does not differ between a current read and write position, but uses a common current
position for both reading and writing. Further, this current position (which it iscalled in this
documentation) can be set to any byte within the file, and to the end-of-file position. Note
that the current position is zero-based.

[Indirect naming.]
The stream 1/O operations in ARexx do not get a parameter which is the name of thefile.
Instead, ARexx uses an indirect naming scheme. The OPEN () built-in function binds a
REXX stream name for afile to anamed file in the AmigaDOS operating system; and later,
only the REXX stream name is used in other stream /O functions operating on that file.

[Special stream names.]
There are two special file namesin ARexx: STDOUT and STDIN, which refer to the
standard input file and standard output file. With respect to the indirect naming scheme,
these are not file names, but names for open streams; i.e. they can be used in stream /O
operations other than OPEN () . For some reason, isit possible to close STDIN but not
STDOUT.

[NOTREADY not supported.]
ARexx has no NOTREADY condition. Instead, you must detect errors by calling EOF () and
checking the return codes from each 1/0 operations.

[Other things missing.]
In ARexx, all files must be explicitly opened. There is no way to reposition line-wise,
except for reading lines and keeping a count yourself.

Of course, ARexx also hasalot of functionality which is not part of standard REXX, like relative
repositioning, explicit opening, an end-of-file indicator, etc. But this functionality is descriptive
above in the descriptions of extended built-in functions, and it is of lessinterest here.

When an ARexx script has opened afilein Write mode, other ARexx scripts are not allowed to
access that file. However, if thefileis opened in Read or Append mode, then other ARexx scripts
can open the file too, and the same state of the contents of the file is seen by al scripts.

Note that it is difficult to tranglate between using standard REXX stream /O and ARexx stream
[/O. In particular, the main problem (other than missing functionality in one of the systems) isthe
processing of end-of-lines. In standard REXX, the end-of-file is detected by checking whether there
is more data left, while in ARexx one checks whether the end-of-file has been read. The following
Is acommon standard REXX idiom:

while lines('file)>0 /* for each line available */
say linein(‘file’) /* processit */
end

In ARexx this becomes:

200

tmp = readln('file') /* attempt to read first line */

do until eof ('file') /* 1f EOF was not seen */

say tmp /* process line */

tmp = readln('file') /* attempt to read next line */
end

It is hard to mechanically translate between them,

because of the lack of an EOF () built-in function in standard REXX, and the lack of a LINES ()
built-in function in ARexx.

Note that in the ARexx example, an improperly terminated last line is not read as an independent
line, since READLN () searches for an end-of-line character sequence. Thus, in the last invocation
tmp is set to the last unterminated line, but EOF () returns true too. To make this different, make
the UNTIL subterm of the DO loop check for the expression EOF ('file') && TMP<>".

The limit of 1000 charactersfor READLN () means that a generic line reading routine in ARexx
must be similar to this:

readline: procedure

parse arg filename

line = "'

do until length(tmpline)<1000
tmpline = readln (filename)
line = line || tmpline

end

return line

Thisroutine callsREADLN () until it returns aline that is shorter than 1000 characters. Note that
end-of-file checking isignored, since READLN () returns an empty string a the end-of-stream.

6.13.11 Stream I/O in BRexx 1.0b

BRexx contains a set of 1/0 which shows very close relations with the C programming language
1/O library. In fact, you should consider consulting the C library documentation for in-depth
documentation on this functionality.

BRexx contains atwo-level naming scheme: in REXX, streams are referred to by a stream handle,
which is an integer; in the operating system files are referred to by afile name, which isanormal
string. The function OPEN () is used to bind afile name to a stream handle. However, BRexx I/O
functions generally have the ability to get areference either as afile name and a stream handle, and
open the file if appropriate. However, if the name of afile is an integer which can beinterpreted as a
file descriptor number, it isinterpreted as a descriptor rather than a name. Whenever you use

BRexx and want to program robust code, always use OPEN () and the descriptor.

If afileisopened by specifying the namein al/O operation other than OPEN () , and the nameisan
integer and only one or two higher than the highest current file descriptor, strange things may
happen.

201

Five special streams are defined, having the pseudo file names. <STDIN>, <STDOUT>,
<STDERR>, <STDAUX>, and <STDPRN>; and are assigned pre-defined stream handles from 0 to
4, respectively. These refer to the default input, default output, and default error output, default
auxiliary output, and printer output. The two last generally refer to the coM1 : and LPT1 : devices
under MS-DOS. Either upper or lower case |etter can be used when referring to these four special
names.

However, note that if any of these five special files are closed, they can not be reopened again. The
reopened file will be just anormal file, having the name e.g. <STDOUT>.

There is afew things you should watch out for with the specia files. 1/0 involving the <STDAUX>
and <STDPRN> can causetheAbort, Retry, Ignore message to be shown once for each
character that was attempted read or written. It can be boring and tedious to answer R or T if the text
string islong. If A isanswered, BRexx terminates.

You should never write data to file descriptor O (<STDIN>), apparently, it will only disappesr.
Likewise, never read datato file descriptors 1 and 2 (<STDOUT> and <STDERR>), the former
seems to terminate the program while the latter apparently just returns the nullstring. Also be careful
with reading from file descriptors 3 and 4, since your program may hang if no datais available.

OPEN (file,mode)

The OPEN () built-in function opens afile named by file, in mode mode, and returns an integer
which is the number of the stream handle assigned to thefile. In general, the stream handle is a non-
negative integer, where 0 to 4 are pre-defined for the default streams. If an error occurred during
the open operation, the value -1 is returned.

The mode parameter specifies the mode in which the file is opened. It consists of two parts: the
access mode, and the file mode. The access mode part consists of one single character, which can
be r for read, w for write, and a for append. In addition, the + character can be appended to open a
filein both read and write mode. The file mode part can also have of one additional character
which can be t for text filesand b for binary files. The t mode is default.

The following combinations of + and access mode are possible:

r is non-destructive open for reading; w is destructive open for write-only mode; a is non-
destructive open for in append-only mode, i.e. only write operations are alowed, and all write
operations must be performed at the end-of-file; r+ is non-destructive open for reading and writing;
w+ isdestructive open for reading and writing; and a+ is non-destructive open in append update,
i.e. reading is allowed anywhere, but writing is allowed only at end-of-file. Destructive mode means
that the file is truncated to zero length when opened.

In addition, the b and t characters can be appended in order to open thefile in binary or text mode.
These modes are the same as under C, athough the t mode character is strictly not in ANSI C. Also

note that r, w, and a are mutually exclusive, but one of them must always be present. The mode + is

202

optional, but if present, it must always come immediately after r, w, or a. The t and b modes are
optional and mutually exclusive; the default is t. If present, t or b must be the last character in the
mode string.

open('myfile,'w") 7 perhaps
open('no.such.file,'r) -1 if non-existent
open(‘c:tmp’,'r+b") 6 perhaps

If two file descriptors are opened to the same file, only the most recently of them works. However,
if the most recently descriptor is closed, the least recently starts working again. There may be other
strange effects too, so try avoid reopening afile that is already open.

CLOSE (file)

The CLOSE () built-in function closes afile that is already open. The parameter file can be either a
stream handle returned from OPEN () or afile name which has been opened (but for which you do
not known the correct stream handle).

The return value of this function seemsto be the nullstring in all cases.

close(6) if open

close(7) if not open

close('foobar’) perhaps
EOF (file)

TheEOF () built-in function checks the end-of-file state for the stream given by file, which can be
either a stream descriptor or afile name. The value returned is 1 if the end-of-file status is set for
the stream, and 0 if it iscleared. In addition, the value -1 isreturned if an error occurred, for
instance if the file is not open.

The end-of-file indicator is set whenever an attempt was made to read at least one character past the
last character of the file. Note that reading the last character itself will not set the end-of-file
condition.

 eof(foo) 0 if not at eof
eof (‘8") 1 if at eof
eof (‘no.such.file) -1 if fileisn't open

203

READ([file] [, length])

The READ () built-in function reads data from the file referred to by the file parameter, which can
be either afile name or a stream descriptor. If it isafile name, and that fileis not currently open,
then BRexx opensthe file in mode rt. The default value of the first parameter is the default input
stream. The dataisread from and including the current position.

If the length parameter is not specified, awhole lineisread, i.e. reading forwards to and including
the first end-of-line sequence. However, the end-of-line sequence itself is not returned. If the
length parameter is specified, it must be a non-negative integer, and specified the number of
characters to read.

The data returned is the data read, except that if length is not specified, the terminating end-of-line
sequence is stripped off. If the last line of afile contains a string unterminated by the end-of-string
character sequence, then the end-of-file isimplicitly interpreted as an end-of-line. However, in this
case the end-of-file state is entered, since the end-of-stream was found while looking for an end-of -
line.

read('foo’) oneline readsacompleteline

read('foo',5) anoth reads parts of aline

read(6) erline using afile descriptor

read() hello perhaps, reads line from default input
there stream

WRITE([file] [, [string] [, dummy]])

TheWRITE () built-in function writes a string of data to the stream specified by the file parameter,
or by default the default output stream. If specified, file can be either afile name or a stream
descriptor. If it isafile name, and that file is not aready open, it is opened using wt mode.

The data written is specified by the string parameter.

The return valueis an integer, which is the number of bytes written during the operation. If thefile
isopened in text mode, all ASCII newline characters are translated into ASCIl CRLF character
sequences. However, the number returned is not affected by this trandation; it remains independent
of any text of binary mode. Unfortunately, errors while writing is seldom trapped, so the number
returned is generally the number of character that was supposed to be written, independent of
whether they was actually written or not.

If athird parameter is specified, the datais written asaline, i.e. including the end-of-line sequence.
Else, the datais written as-is, without any end-of-line sequence. Note that with BRexx, the third
parameter is considered present if at least the commain front of it--the second comma--is present.
Thisisabit inconsistent with the standard operations of the ARG () built-in function. The value of
the third parameter is always ignored, only its presence is considered.

204

If the second parameter is omitted, only an end-of-line action is written, independent of whether the
third parameter is present or not.

write('bar','data) 4 writes four bytes
write('bar','data,'nl") 4+7? writealine
write('bar’,'data,) 4+7? same as previous

SEEK (file[, [offset] [,origin]])

The SEEK () built-in function moves the current position to alocation in the file referred to by file.
The parameter file can be either afile name (which must already be open) or a stream descriptor.
This function does not implicitly open files that is not currently open.

The parameter offset determines the location of the stream and must be an integer. It defaults to
zero. Note that the addressing of bytes within the stream is zero-based.

The third parameter can be any of TOF, CUR, or EOF, in order to set the reference point in which to
recon the offset location. The three strings refer to top-of-file, current position, and end-of-file, and
either upper or lower case can be used. The default value is ?7?2?.

The return value of this function is the absolute position of the position in the file after the seek
operation has been performed.

The SEEK () function provides avery important additional feature. Whenever afile opened for
both reading and writing has been used in aread operation and is to be used in awrite operation
next (or vice versa), then acall to SEEK () must be performed between the two /O calls. In other
words, after aread only a seeking and reading may occur; after awrite, only seeking and writing
may occur; and after a seek, reading, writing, and seeking may occur.

6.13.12 Problems with Binary and Text Modes

Under the MS-DOS operating system, the end-of-line character sequence is <CR><LFEF>, whilein
C, the end-of-line sequence isonly <L.F>. Thisopensfor some very strange effects.

When an MS-DOS fileis opened for read in text mode by BRexx, all <CR><LF> character
sequences in file data are tranglated to <L.F> when transferred into the C program. Further, BRexx,
which isaC program, interprets <L.F> as an end-of-line character sequence. However, if thefileis
opened in binary mode, then the first trandlation from <CR><LEF> inthefileto <LF> into the C
program is not performed. Consequently, if afilethat really isatext fileis opened asabinary file
and read line-wise, al lines would appear to have atrailing <CR> character.

Similarly, <LF> written by the C program is translated to <CR><LF> in thefile. Thisisaways
done when thefileis opened in text mode. When thefileis opened in binary mode, all datais
transferred without any alterations. Thus, when writing linesto afile which is opened for writein
binary mode, the lines appear to have only <LEF>, not <CR><LE>. If later opened as atext file, this
IS not recognized as an end-of-line sequence.

205

Example: Differing end-of-lines

Hereis an example of how an incorrect choice of file type can corrupt data. Assume BRexx running

under MS-DOS, using <CR><LF> as aend-of-line sequence in text files, but the system calls
trandating thisto <L.F> in thefile I/O interface. Consider the following code.

file = open('testfile.dat’,

thV)

call write file, '45464748'x, 'dummy'
call write file, '65666768'x, 'dummy'

call close file

file = open('testfile.dat’',
say c2x(read(file))

*/

say c2x(read(file))

*/

call close file

Here, two lines of four characters each are written to the file, while when reading, two lines of five

lrbl)

/*
/*
/*

/*
/*

/*

text mode */
i.e. 'abcd' */
i.e. 'ABCD' */

binary mode */
says '454647480D'

says '656667680D'

characters are read. The reason is simply that the writing was in text mode, so the end-of-line
character sequence was <CR><LF>; while the reading was in binary mode, so the end-of-line
character sequence was just <LF>. Thus, the <CR> preceding the <LF> istaken to be part of the

line during the read.

To avoid this, be very careful about using the correct mode when opening files. Failure to do so will

almost certainly give strange effects.

206

7 Extensions

This chapter describes how extensions to Regina are implemented. The whole contents of this
chapter is specific for Regina.

7.1 Why Have Extensions

Why do we need extensions? Well, there are a number of reasons, although not al of these are very
good reasons:

¢ Adaptations to new environments may require new functionality in order to easily interface to
the operating system.

¢ Extending the language with more power, to facilitate programming.

¢+ Sometimes, alot of time can be saved if certain assumptions are met, so an extension might be
implemented to allow programmers to take shortcuts.

¢ When aprogram is ported from one platform to another, parts of the code may depend of non-
standard features not available on the platform being ported to. In this situation, the availability
of extensions that implement the feature may be of great help to the programmer.

¢ Theimplementor had some good idea during devel opment.
¢ Backwards compatibility.
Extensions arise from holes in the functionality. Whether they will survive or not depends on how

they are perceived by programmers; if perceived as useful, they will probably be used and thus
supported in more interpreters.

7.2 ZOC REXX Extensions

In addition to the original Regina REXX language elements, ZOC extends the language with
commands to perform tasks related to terminal emulation (making connections, sending text,
receiving files, etc.).

From the perspective or REXX those are a 3 party library and they are not covered here . (The

documentation for the ZOC specific commands can be found in the help menu of the ZOC program
under ZOC Rexx commands).

7.3 Extensions and Standard REXX

In standard REXX, the OPTIONS instruction provides a"hook" for extensions. It takes any type of

207

parameters, and interprets them in a system-dependent manner.

The format and legal values of the parameters for the OPTIONS instruction is clearly
implementation dependent [TRL 2, p62].

7.4 Specifying Extensions in Regina

In Regina there are three level of extensions. Each independent extension has its own name.
Exactly what an independent extension is, will depend on the viewer, but a classification has been
done, and islisted at the end of this chapter.

At the lowest level are these "atomic" extensions. Then there are some "meta-extensions’. These
are collections of other extensions which belong together in some manner. If you need the extension
for creating "buffers’ on the stack, it would be logical to use the extension to remove buffers from
the stack too. Therefore, all the individual extensions for operations that handle buffersin the stack
can be named by such a"meta-extensions". At the end of this chapter, thereisalist of al the meta-
extensions, and which extensions they include.

At thetop is"standards'. These are sets of extensions that makes the interpreter behave in afashion
compatible with some standard. Note that "standard” is used very liberally, since it may refer to
other implementations of REXX. However, this description of how the extensions are structured is
only followed to some extent. Where practical, the structure has been deviated.

7.5 The Trouble Begins

There is one very big problem with extensions. If you want to be able to turn them on and off during
execution, then your program has to be a bit careful.

More and more REXX interpreters (including Regina parsing the program when the interpreter is
started. The "old" way was to postpone the parsing of each clause until it was actually executed.
This leads to the problem mentioned.

Suppose you want to use an extension that allows a dightly different syntax, for the sake of the
argument, let us assume that you allow an expression after the SELECT keyword. Also assume that
this extension is only alowed in extended mode, not in "standard mode'. However, since Regina
parses the source code only once (typically at the starts of the program), the problem is a catch-22:
the extension can only be turned on after parsing the program, but it is needed before parsing. This
also appliesto alot of other REXX interpreters, and all REXX compilers and preprocessors.

If the extension is not turned on during parsing, it will generate a syntax error, but the parsing is al
done before the first clause is executed. Consequently, this extension can not be turned on during
execution, it hasto be set before the parsing starts.

Therefore, there are two alternative ways to invoke a set of extensions before the REXX program is
parsed:

¢ It can beinvoked by using acommand line option to the interpreter; say -e. The word following
the option is the extension or standard to invoke. Multiple —e options can be specified. This

208

method is not supported in Regina.

¢ It can beinvoked by setting an environment variable, which must be a string of the same format
as the parameters to the OPTTIONS clause. Regina supports this mechanism by the use of the
REGINA OPTIONS environment variable.

7.6 The Format of the OPTIONS clause

The format of the OPTIONS clauseisvery simple, it isfollowed by any REXX string expression,
which isinterpreted as a set of space separated words. The words are treated strictly in order from
left to right, and each word can change zero or more extension settings.

Each extension has a name. If the word being treated matches that name, that extension will be
turned on. However, if the word being treated matches the name of an extension but has the prefix
NO, then that extension is turned off. If the word does not match any extensions, then it is ssimply
ignored, without creating any errors or raising any conditions.

Example: Extensions changing parsing

An example of thisisthe LINES BIF. In the following piece of code the same BIF returns different
data:

/* file 'aa' contains 5 lines */

options FAST LINES BIF DEFAULT

do i=1 to 2
if i=2 then OPTIONS NOFAST LINES BIF DEFAULT
say lines('aa')

end

In the first iteration of the loop, LINES(‘ad) returns 1, indicating that thereisat least 1 line
remaining the the stream 'aa. However, in the second iteration of the loop, LINES('ad) will return
5, indicating that there are 5 lines remaining in the stream.

Regina's frequent usage of extensions may slow down execution. To illustrate how this can happen,
consider the OPEN () extrabuilt-in function. As thisis an extension, it might be dynamically
included and excluded from the scope of currently defined function. Thus, if the functionisused in
aloop, it might be in the scope during the first iteration, but not the second. Thus, Regina can not
cache anything relating to this function, since the cached information may be outdated later. As a
consequence, Regina must look up the function in the table of functions for each invocation. To
avoid this, you can set the extension CACHEEXT, which tells Regina to cache info whenever
possible, without regards to whether this may render useless later executions of OPTIONS.

7.7 The Fundamental Extensions

Hereisadescription of all "atomic" extensionsin Regina:

209

[AREXX BIFS]
This option allows the user to enable or disable the AREXX BIFsintroduced into Regina
3.1. Thedefault iISAREXX BIFS onAmigaand AROS, but NOAREXX BIFS onall other

platforms.

[AREXX SEMANTICS]
With the introduction of AREXX BIFsinto Regina 3.1, differencesin the semantics of a
number of BIFsresulted. These BIFs that differ between Sandard Regina and AREXX are
OPEN (), CLOSE () and EOF () . ThisOPTION specifies that the AREXX semantics be

used for these BIFs. The default isto use Regina semantics for these BIFs.
[BUFTYPE BIF]

Allows calling the built-in function BUFTYPE () , which will write out all the contents of
the stack, indicating the buffers, if there are any. The ideais taken from VM/CMS, and its
command named BUFTYPE.

[CALLS AS_FUNCS]
Allows the old broken syntax of :

call myfunc(argl,arg2)

New programs should use the standard syntax for the CALL instruction. Asthe
determination of invalid syntax is done before the code is executed, then this OPTION can
only be specified using the REGINA_OPTIONS environment variable.
NOCALLS AS FUNCS isthe default.

[CACHEEXT]
Tells Regina that information should be cached whenever possible, even when this will
render future execution of the OPTIONS instruction useless. Thus, if you use e.g. the
OPEN () extrabuilt-in function, and you set CACHEEXT, then you may experience that the
OPEN () function does not disappear from the current scope when you set the
NOOPEN_ BIF extension.

Whether or not aremoval of an extension really does happen is unspecified when
CACHEEXT has been called at least once. Effectively, info cached during the period when
CACHEEXT wasin effect might not be "uncached”. The advantage of CACHEEXT is

efficiency when you do not need to do alot of toggling of some extension.
[DESBUF_BIF]

Allows calling the built-in function DESBUF (), to remove all contents and al buffers from
the stack. This function is an idea taken from the program by the same name under

VM/CMS.
[DROPBUF_BIF]

Allows calling the built-in function DROPBUF () , to removed one of more buffers from the

stack. Thisfunction is an idea take from the program by the same name under VM/CMS.
[EXT_COMMANDS AS FUNCS]

When Regina resolves an expression to afunction, and that function is not abuilt-in or a
registered external function, Regina attempts to execute the function as an operating system
command. With NOEXT COMMANDS AS_ FUNCS set, Regina will return error 43;
"Routine not found". EXT COMMANDS AS FUNCS isthe defaullt.

[FAST LINES BIF DEFAULT]
The LINES () BIFinversions of Regina prior to 0.08g returned the actual number of lines
available in astream. Since then, the LINES () BIF has been changed to only return O or 1.
Thiswas done for two reasons. Firgt, it isfaster, and secondly. the ANSI standard allows for
an option to return the actual number of lines. This OPTION is for backwards compatibility
with programs written assuming the prior behavior of the LINES () BIF.

210

FAST LINES BIF DEFAULT isthe default.

[FLUSHSTACK]
Tdlsthe interpreter that whenever a command clause instructs the interpreter to flush the
commands output on the stack, and simultaneously take the input from the stack, then the
interpreter will not buffer the output but flush it to the real stack before the command has
terminated. That way, the command may read its own output. The default setting for
Regina isnot to flush, i.e. NOFLUSHSTACK, which tellsinterpreter to temporary buffer al
output lines, and flush them to the stack when the command has finished.

[HALT ON_EXT CALL FAIL]
This options tells the interpreter that when a called external routine fails the caller halts with
asyntax error 40.1. This behaviour also occurs with the STRICT ANST option.
NOHALT ON EXT CALL FAIL isthe default.

[INTERNAL QUEUES]
Regina implements multiple named queues both as part of the interpreter, and as an external
resource. If a queue name has the character ‘@' embedded, Regina will assume this to be an
external queue name. This OPTION allows the exclusive use of Regina's internal queuing
mechanism regardless of the queue name. NOINTERNAL QUEUES isthe default.

[LINEOUTTRUNC]
This options tells the interpreter that whenever the LINEOUT () built-in functionis
executed for a persistent file, the file will be truncated after the newly written line, if
necessary. Thisisthe default setting of Regina, unless your system does not have the
ftruncate () systemcall.

[MAKEBUF_BIF]
Allows caling the built-in function MAKEBUF () , to create a buffer on the stack. This
function is an idea taken from a program by the same name under VM/CMS.

[PRUNE_TRACE]
M akes deeply nested routines be displayed at one line. Instead of indenting the trace output
at avery long line (possibly wrapping over several lines on the screen). It displays [...] at
the start of the line, indicating that parts of the white space of the line has been removed.
PRUNE_TRACE isthe default.

[QUEUES_301]
This OPTION changes the behaviour of external queue names. In Regina 3.1 meaning was
given to queue names. If aqueue name had '@' in its name, it was identified as an external
gueue (requiring rxstack to be running). Before 3.1, any time RXQUEUE BIF was used, it
always referenced an external queue. New programs should use the naming convention to
identify external queues, because you will be able to use internal of external queuesin other
instructions like ADDRESS.WITH. The default iSNOQUEUES _301.

[REGINA BIFS]
ThisOPTION allows the user to turn on all non-ANSI extension BIFs. The default is
REGINA BIFS.

[STDOUT FOR_STDERR]
All output that Regina would normally write to stderr, such as TRACE output and errors,
are written to stdout instead. Thisis useful if you need to capture TRACE output and normal
output from SAY to afilein the order in which the lines were generated. The default is
NOSTDOUT FOR_STDERR.

[STRICT ANSI]
This OPTION results in interpretation of a program to strict ANSI standards, and will reject
any Regina extensions. NOSTRICT ANSI isthe default.

211

[STRICT WHITE SPACE COMPARISONS]

This OPTION specifiesif ANSI rules for non-strict comparisons are applied. Under ANSI,

when doing non-strict comparisons, only the space character is stripped from the two
comparators. Under Regina's default behavior, all whitespace characters are stripped.

NOSTRICT WHITE SPACE COMPARISONS isthe default.
[TRACE_HTML]

This OPTION generates HTML <PRE> and </PRE> tags around TRACE output, to enable
tracing from within CGI scripts. The default isNOTRACE HTML. The following code shows

the necessary header information to enable this feature:
#!/usr/bin/rexx

OPTIONS STDOUT FOR STDERR TRACE HTML
Parse Version ver

/* following 2 lines MUST be 'sayed' before TRACE turned on

*/

Say 'Content-type: text/html'
Say

Say ver

Trace i

Say 'With tracing on'

Trace o

Say 'With tracing off'’
Return O

The output from thiswould look like:

Location Edit VMiew Go Bookmarks Tools Setings

Window Help
ook s A
@, $v W @ % o X
E¥ Location @ httperflocalhost/'cgi-hindrace. g -r|

RExx-Fegina_3.3 5.00 25 Apr 2004
2 *-* Lay 'With tracing on'
L= "With tracing on”
With tracing on
5 %% Trace o
With tracing off

Loading complete

Note: OPEN BIF, FIND BIF,CLOSE BIF and FILEIO OPTIONSs have been removedin
Regina 3.1

212

7.8 Meta-extensions

[ANSI]

Combination of STRICT ANSI and STRICT WHITE SPACE COMPARISONS .
[BUFFERS]

Combination of BUFTYPE BIF, DESBUF BIF, DROPBUF BIF and MAKEBUF BIF.

7.9 Semi-standards

[CMS]
A set of extensions that stems from the VM/CMS operating system. Basically, thisincludes
the most common extensionsin the VM/CMS version of REXX, in addition of some
functions that perform tasks normally done with commands under VM/CMS.

[VMS]
A set of interface functions to the VM S operating system. Basically, this makes the REXX
programming under VMS as powerful as programming directly in DCL.

[UNIX]
A set of interface functionality to the Unix operating system. Basically, thisincludes some
functions that are normally called as commands when programming Unix shell scripts.
Although it is possible to call these as commands in Regina, there are considerable speed
improvements in implementing them as built-in functions.

7.10 Standards

The following table shows which options are available in different REXX Language Levels, and
the default settings applicable for Regina.

[ANSI]

REXX Language level 5.0, as described in [ANSI].
[REGINA]

REXX Language level 5.0, plus extensions, as implemented by Regina 3.1 and above.
[SAA]

REXX Language level ??, asdefined by IBM's System Application Architecture [SAA].
[TRL1]

REXX Language level 3.50, as described in [TRL1].
[TRL2]

REXX Language level 4.00, as described in [TRL2].

213

Option ANSI REGIN SAA TRL1 TRL2
A
AREXX BIFS no yes no no no
AREXX_SEMANTICS no no no no no
BUFTYPE BIF no yes no no no
CACHEEXT no no no no no
CALLS_AS_FUNCS no yes no no no
DESBUF_BIF no yes no no no
DROPBUF BIF no yes no no no
EXT COMMANDS AS_FUNCS no yes no no no
FAST LINES BIF DEFAULT yes yes no no no
FLUSHSTACK no no no no no
HALT ON EXT CALL FAIL no yes no no no
INTERNAL QUEUES no no no no no
LINEOUTTRUNC no yes no no no
MAKEBUF BIF no yes no no no
PRUNE TRACE no yes no no no
QUEUES 301 no | yes no no no
REGINA BIFS no yes no no no
STDOUT FOR_STDERR no no no no no
STRICT ANSI yes no no no no
STRICT WHITE SPACE_COMPARISONS | yes no no no no
TRACE_HTML no no no no no

214

8 Implementation Limits

This chapter lists the implementation limits required by the REXX standard. All implementations
are supposed to support at least these limits.

8.1 Why Use Limits?

Why use implementation limits at all? Often, a program (ab)uses a feature in alanguage to an extent
that the implementor did not foresee. Suppose an implementor decides that variable names can not
be longer than 64 bytes. Sooner or later, a programmer gets the idea of using very long variable
names to encode special information in the name; maybe as the output of a machine generated
program. The result will be a program that works only for some interpreters or only for some
problems.

By introducing implementation limits, REXX tells the implementors to what extent a
implementation is required to support certain features, and simultaneoudly it tells the programmers
how much functionality they can assume is present.

Note that these limited are required minimums for what an implementation must allow. An
interpreter is not supposed to enforce these limits unless there is a good reason to.

8.2 What Limits to Choose?

A limit must not be perceived as an absolute limit, the implementor is free to increase the limit. To
some extent, the implementor may also decrease the limit, in which case this must be properly
documented as a non-standard feature. Also, the reason for this should be noted in the
documentation.

Many interpreters are likely to have "memory" as an implementation limit, meaning that they will
allow any size aslong asthere is enough memory left. Actually, thisis equivalent to no limit, since
running out of memory is an error with limit enforcing interpreters as well. Some interpreters let the
user set the limits, often controlled through the OPTTONS instruction.

For computers, limit choices are likely to be powers of two, like 256, 1024, 8192, etc. However, the
REXX language takes the side of the user, and defines the limits in units which looks as more
"sensible” to computer non-experts: most of the limitsin REXX are numbers like 250, 500, 1000,
etc.

8.3 Required Limits

These are the implementation minimums defined by REXX:

[Binary strings]
Must be able to hold at least 50 characters after packing. That means that the unpacked size

215

might be at least 400 characters, plus embedded white space.

[Elapse time clock]
Must be able to run for at least 10** 10-1 seconds, which is approximately 31.6 years. In
generd, thisisreally abig overkill, since virtually no program will run for a such a period.
Actually, few computers will be operational for such a period.

[Hexadecimal strings]
Must be able to hold at least 50 characters after packing. This means that the unpacked size
might be at least 100 characters, plus embedded white space.

[Literal strings]
Must be able to hold at least 100 characters. Note that a double occurrence of the quote
character (the same character used to delimit the string) in aliteral string counts as asingle
character. In particular, it does not count as two, nor does it start a new string.

[Nesting of comments]
Must be possibleto in at least 10 levels. What happens then is not really defined. Maybe one
of the syntax errorsisissued, but noneis obvious for this use. Another, more dangerous way
of handling this situation would be to ignore new start-of-comments designators when on
level 10. This could, under certain circumstances, lead to running of code that is actually
commented out. However, most interpreter are likely to support nesting of commentsto an

arbitrary level.
[The Number of Parameters]

In calls must be supported up to at least 10 parameters. Most implementations support
somewhat more than that, but quite afew enforce some sort of upper limit. For the built-in
function, this may be a problem only for MIN () and MAX () .

[Significant digits]
Must be supported to at least 9 decimal digits. Also, if an implementation supports floating
point numbers, it should allow exponents up to 9 decimal digits. An implementation is
allowed to operate with different limits for the number of significant digits and the numbers
of digitsin exponents.

[Subroutine levels]
May be nested to atotal of 100 levels, which counts both internal and external functions, but
probably not built-in functions. You may actually trip in this limit if you are using recursive
solution for large problems. Also, some tail-recursive approaches may crash in this limit.

[Symbol (name) length]
Can be at least 50 characters. Thisisthe name of the symbol, not the length of the valueif it
names avariable. Nor isit the name of the variable after tail substitution. In other words, it
isthe symbol asit occursin the source code. Note that this applies not only to ssmple
symbols, but also compound symbols and constant symbols. Consequently, you can not
write numbers of more than 50 digits in the source code, even if NUMERIC DIGITS isset
high.

[Variagle name length]
Of at least 50 characters. Thisisthe name of avariable (which may or may not be set) after
tail substitution.

8.4 Older (Obsolete) Limits

First edition of TRL1 contained some additional limits, which have been relaxed in the second
edition in order to make implementation possible for alarge set of computers. These limits are:

216

[Clock granularity]
Woas defined to be at least of amillisecond.

Far from all computers provide this granularity, so the requirement have been relaxed. The
current requirement is a granularity of at least one second, although a millisecond
granularity is advised.

8.5 What the Standard does not Say

An implementation might enforce a certain limit even though one is not specified in the standard.
This section triesto list most of the places where this might be the case:

[The stack]
(Also called: the external data queue) is not formally defined as a concept of the language
itself, but a concept to which the REXX language has an interface. Several limits might
apply to the stack, in particular the maximum length of aline in the stack and the maximum
number of lines the stack can hold at once.

There might al'so be aso be other limits related to the stack, like a maximum number of
buffers or a maximum number of different stack. These concepts are not referred to by
REXX, but the programmer ought to be aware of them.

[Files]
May have severa limits not specified by the definition of REXX, e.g. the number of files
simultaneously open, the maximum size of afile, and the length and syntax of file names.
Some of these limits are enforced by the operating system rather than an implementation.
The programmer should be particularly aware of the maximum number of simultaneously
open files, since REXX does not have a standard construct for closing files.

[Expression nesting]
Can in some interpreters only be performed to a certain level. No explicit minimum limit has
been put forth, so take care in complex expressions, in particular machine generated
expressions.

[Environment name length]
May have some restrictions, depending on your operating system. There isnot defined any
[imit, but there exists an error message for use with too long environment names.

[Clause length]
May have an upper limit. Thereis defined an error message "Clause too long" which is
supposed to be issued if a clause exceeds a particular implementation dependent size. Note
that a"clause" does not mean a"line" in this context; aline can contain multiple clauses.

[Source line length]
Might have an upper limit. Thisis not the same as a"clause" (see above). Typicaly, the
source line limit will be much larger than the clause limit. The source line limit ought to be
as large as the string limit.

[Stack operations]
Might be limited by several limits; first thereisthe number of strings in the stack, then there
is the maximum length of each string, and at last there might be restrictions on the character
set alowed in stringsin the stack. Typically, the stack will be able to hold any character. It
will either have "memory" as the limit for the number of string and the length of each string,
or it might have a fixed amount of memory set aside for stack strings. Some
implementations also set a maximum length of stack strings, often 2*8 or 2* 16.

217

8.6 What an Implementation is Allowed to "Ignore”

In order to make the REXX language implementable on as many machines as possible, the REXX
standard alow implementation to ignore certain features. The existence of these features are
recommended, but not required. These features are:

[Floating point numbers]
Are not required; integers will suffice. If floating points are not supported, numbers can
have not fractional or exponential part. And the normal division will not be available, i.e. the
operator " /" will not be present. Use integer division instead.

[File operations]
Are defined in REXX, but an implementation seems to be allowed to differ in just about any
file operation feature.

8.7 Limits in Regina

Regina tries not to enforce any limits. Wherever possible, "memory" isthe limit, at the cost of
some CPU whenever internal data structures must be expanded if their initial size were too small.
Note that Regina will only increase the internal areas, not decrease them afterwards. The rationale
isthat if you happen to need alarge internal area once, you may need it later in the same program
too.

In particular, Regina has the following limits:

Binary strings source line size
Clock granularity 0.001-1 second (note 3)
Elapse time clock until ca. 2038 (note 1)
Named Queues 100

Hexadecimal strings sourceline size
Interpretable string ~ sourceline size
Literal string length sourceline size
Nesting of comments memory
Parameters memory
Significant digits memory (note 2)
Subroutine levelsmemory

Symbol length source line size
Vaiable name length memory (note 2)

Notes:

1) Regina uses the Unix-derived call time () for the elapse time (and timein general). Thisisa
function which returns the number of seconds since January 1% 1970. According to the ANSI C
standard, in which Regina iswritten, thisis a number which will at least hold the number 2**31-1.
Therefore, these machines will be able to work until about 2038, and Regina will satisfy the
requirement of the elapse time clock until 2006. By then, computers will hopefully be 64 bit.

Unfortunately, the time () C function call only returns whole seconds, so Regina isforced to use
other (less standardized) callsto get afiner granularity. However, most of what is said about

218

time () appliesfor thesetoo.

2) The actual upper limit for these are the maximum length of a string, which is at least 2**32. So
for all practical purposes, the limit is"memory".

3) The clock granularity isabit of a problem to define. All systems can be trusted to have a
granularity of about 1 second. Except from that, it's very difficult to say anything more specific for
certain. Most systems allows aternative ways to retrieve the time, giving a more accurate result.
Wherever these alternatives are available, Regina will try to use them. If everything else fails,
Regina will use 1 second granularity.

For most machines, the granularity are in the range of afew milliseconds. Some typical examples

are: 20 msfor Sun3, 4 msfor Decstations 3100, and 10 msfor SGI Indigo. Since thisis a hardware
restriction, thisis the best measure anyone can get for these machines.

219

9 Appendixes

9.1 Definitions

In order to make the definitions more readable, but still have arigid definition of the terms, some
extra comments have been added to some of the definitions. These comments are enclosed in square
brackets.

Argument is an expression supplied to afunction or subroutine, and it provides data on which the
call can work on.

Assignment is a clause in which second token is the equal sign. [Note that the statements " a==b"
and "3=4" are an (invalid) assignment, not an expression. The type of the first token isirrelevant; if
the second token is the equal sign, then the clause is assumed to be an assignment.]

Blanks are characters which glyphs are empty space, either vertically or horizontally. A blank is not
atoken (but may sometimes be embedded in tokens), but acts as token separators. [Exactly which
characters are considered blanks will differ between operating systems and implementations, but the
<gpace> character isalways ablank. The <tab> character is also often considered a blank. Other
characters considered blank might be the end-of-line <eol>), vertical tab (<vt>), and formfeed
(<ff>). See specific documentation for each interpreter for more information.]

Buffer
Caller routine

Character isapiece of information about a mapping from a storage unit (normally a byte) and a
glyph. Often used as "the meaning of the glyph mapped to a particular storage unit”. [The glyph "A"
isthe same in EBCDIC and ASCI|, but the character "A" (i.e. the mapping from glyph to storage
unit) differs,]

Character stringisan finite, ordered, and possibly empty set of characters.

Clause is anon-empty collection of tokensin a REXX script. The tokens making up aclause are all
the consecutive tokens delimited by two consecutive clause delimiters. [Clauses are further divided
into null clauses, instructions, assignments, and commands.]

Clause delimiter is anon-empty sequence of elements of a subset of tokens, normally the linefeed
and the semicolon. Also the start and end of a REXX script are considered clause delimiters. Also
colon is a clause separator, but it isonly valid after alabel.

Command

Compound variableisavariable which name has at least one " ." character that isn't positioned at
the end of the name.

220

Current environment is a particular environment to which commands is routed if no explicit
environment is specified for their routing.

Current procedure level isthe procedure level in effect at a certain point during execution.
Daemon

Decimal digit

Devicedriver

Digit isasingle character having a numeric value associate with its glyph.

Empty string

Environment is ainterface to which REXX can route commands and afterwards retrieve status
information like return val ues.

Evaluation isthe process applied to an expression in order to derive a character string.
Exposing is the binding of avariable in the current procedure level to the variable having the same
name in the caller routine. This binding will bein effect for aslong as the current procedure level is

active.

Exponential form isaway of writing particularly large or small numbersin afashion that makes
them more readable. The number is divided into a mantissa and an exponent of base 10.

Expression is anon-empty sequence of tokens, for which there exists syntactic restrictions on
which tokens can be members, and the order in which the tokens can occur. [Typically, an
expression may consist of literal strings or symbols, connected by concatenation and operators.]

External data queue see "stack".

External subroutineisascript of REXX code, which is executed as a response to a subroutine or
function call that is neither internal nor built-in.

FIFO

Glyph is an atomic element of text, having a meaning and an appearance; like a letter, adigit, a
punctuation mark, etc.

Hex is used as a general abbreviation for term hexadecimal when used in compound words like hex
digit and hex string.

Hexadecimal digit isadigit in the number system having a base of 16. Thefirst ten digits are
identical with the decimal digits (0-9), while for the last six digits, the first six letters of the Latin
alphabet (A-F) are used.

Hexadecimal string isacharacter string that consists only of the hexadecimal digits, and with
optional whitespace to divide the hexadecimal digitsinto groups. Leading or trailing whitespace is

221

illegal. All groups except the first must consist of an even number of digits. If the first group have
an odd number of digits, an extraleading zero isimplied under some circumstances.

Instruction is aclause that is recognized by the fact that the first token is a specia keyword, and
that the clause is not an assignment or label. Instructions typically are well-defined REXX language
components, such as loops and function calls.

Interactive trace is atrace mode, where the interpreter halts execution between each clause, and
offer the user the possibility to specify arbitrary REXX statements to be executed before the
execution continues.

L abel

LIFO

Literal nameis aname which will always be interpreted as a constant, i.e. that no variable
substitution will take place.

Literal string isatoken in a REXX script, that basically is surrounded by quotation marks, in order
to make a character string containing the same characters asthe literal string.

Keyword is aelement from finite set of symbols.
Main level
Main program

Name space is a collection of named variables. In general, the expression is used when referring to
the set of variables available to the program at some point during interpretation.

Nullstring is a character string having the length zero, i.e. an empty character string. [Note the
difference from the undefined string.]

Operating system
Par ameters
Parsing
Procedurelevel

Program is acollection of REXX code, which may be zero or more scripts, or other repositories of
REXX code. However, a program must contain a all the code to be executed.

Queue see "external data queue" or "stack”.
Routine is aunit during run-time, which isa procedural level. Certain settings are saved across
routines. One routine (the caller routine) can be temporarily suspended while another routine is

executed (the called routine). With such nesting, the called routine must be terminated before
execution of the caller routine can be resumed. Normally, the CALL instruction or afunction call is

222

used to do this. Note that the main level of a REXX script is also aroutine.
Script isasingle file containing REXX code.

Space separ ated

Stack

Statement is a clause having in general some action, i.e. a clause other than a null clause.
[Assignments, commands and instructions are statements.]

Stem collection
Stem variable
Strictly order

Subkeyword is a keyword, but the prefix "sub" stresses the fact that a symbol is a keyword only in
certain contexts [e.g. inside a particular instruction].

Subroutine is aroutine which has been invoked from another REXX routine; i.e. it can not be the
"main” program of a REXX script.

Symbol

Symbol table

Tail substitution

Term

Token

Token separ ator
Uninitialized

Variable name
Variable symbol
Whitespace One or several consecutive blank characters.
hex literal

norm. hex string

bin {digit,string,literal}

norm. bin string

223

packed char string

Character strings is the only type of data available in Rexx, but to some extent there are 'subtypes
of character strings; character strings which contents has certain format. These special formatsis
discussed below.

9.2 Bibliography

[KIESEL]

Peter C. Kiesal, REXX - Advanced Techniques for Programmers. McGraw-Hill, 1993, ISBN
0-07-034600-3

[CALLAWAY]

Merill Callaway, The ARexx Cookbook. 511-A Girard Blvd. SE, Albuguerque, NM 87106:
Whitestone, 1992, ISBN 0-9632773-0-8

[TRL2]

M. F. Cowlishaw, The REXX Language- Second Edition. Englewood Cliffs: Prentice-Hall,
1990, ISBN 0-13-780651-5

[TRL1]

M. F. Cowlishaw, The REXX Language - First Edition. Englewood Cliffs. Prentice-Hall,
1985, ISBN 0-13-780735-X

[SYMPOS3]

Proceedings of the REXX Symposium for Ddevel opers andUusers. Stanford: Stanford Linear
Accelerator Center, 1992

[TRH:PRICE]

Stephen G. Price, SAA Portability, chapter 37, pp 477-498. In Goldberg ans Smith I11
[TRH], 1992

[TRH]

Gabriel Goldberg and Smith I11, Philip H., The REXX Handbook. McGraw-Hill, 1992, ISBN
0-07-023682-8

[DANEY]

Charles Daney, Programming in REXX. McGraw-Hill, 1992, ISBN 0-07-015305-1
[BMARKS]

Brian Marks, Advanced REXX programming. McGraw-Hill, 1992
[ZAMARA]

Chris Zamara and Nick Sullivan, Using ARexx on the Amiga. Abacus, 1991, ISBN 1-55755-
114-6

[REXXSAA]
W. David Ashley, SAA Procedure Language REXX Reference. 5 Timberline Dr., Trophy

224

Club, Tx 76262: Pedagogic Software, 1991
[MCGH:DICT]

Sybil P. Parker, McGrw-Hill Dictionary of Computers. McGraw-Hill, 1984, ISBN 0-07-
045415-9

[PIPLAUGER]

P. J. Plauger, The Standard C Library. Englewood Cliffs. Prentice Hall, 1992, ISBN 0-13-
131509-9

[KR]

Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language - Second
Edition. Englewood Cliffs: Prentice Hall, 1988, ISBN 0-13-110362-8

[ANSIC]

Programming languages - C. , Technical Report ISO/IEC 9899:1990, I SO, Case postale
56, CH-1211 Geneve 20, Switzerland, 1990

[OX:CDICT]

Edward L. Glaser and |. C. Pyle and Vderie lllingsworth, Oxford Reference Dictionary of
Computing - Third Edition. Oxford University Press, 1990, ISBN 0-19-286131-X

[ANSI]

Programming Languages - REXX., ANSI X3.274-1996, 11 West 42nd Street, New York,
New York 10036

225

9.3 GNU Free Documentation License

GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
itisnot allowed.

0. PREAMBLE

The purpose of this License isto make a manual, textbook, or other written document "free" in the
sense of freedom: to assure everyone the effective freedom to copy and redistributeit, with or
without modifying it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher away to get credit for their work, while not being considered
responsible for modifications made by others.

ThisLicenseisakind of "copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU Genera Public License, whichisa
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this Licenseis not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The "Document”, below, refers
to any such manual or work. Any member of the public isalicensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section” is anamed appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (For example, if the Document isin part atextbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection with
the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

226

The"Invariant Sections' are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts' are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License.

A "Transparent” copy of the Document means a machine-readable copy, represented in aformat
whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup has been designed
to thwart or discourage subsequent modification by readers is not Transparent. A copy that is not
"Transparent” is called "Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming ssmple HTML designed for human modification. Opaque formats include PostScript,
PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For worksin
formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work's title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in al copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute alarge enough number of copies you
must also follow the conditionsin section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document's
license notice requires Cover Texts, you must enclose the copiesin covers that carry, clearly and
legibly, all these Cover Texts. Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies.
The front cover must present the full title with al words of the title equally prominent and visible.
You may add other material on the coversin addition.

Copying with changes limited to the covers, as long as they preserve thetitle of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminousto fit legibly, you should put the first ones

227

listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opague copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy aong with each Opague copy, or statein or
with each Opague copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the genera network-using public
has access to download anonymously at no charge using public-standard network protocols. 1f you
use the latter option, you must take reasonably prudent steps, when you begin distribution of
Opague copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opague copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of
the Modified Version to whoever possesses a copy of it. In addition, you must do these thingsin the
Modified Version:

A. Usein the Title Page (and on the covers, if any) atitle distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the sametitle asa previous version if the original publisher of that
version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preservein that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History"”, and itstitle, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If thereisno
section entitled "History" in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent

228

copy of the Document, and likewise the network |ocations given in the Document for previous
versionsit was based on. These may be placed in the "History" section. You may omit a network
location for awork that was published at least four years before the Document itself, or if the
original publisher of the version it refersto gives permission.

K. In any section entitled "Acknowledgements' or "Dedications’, preserve the section's title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements’. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section as "Endorsements’ or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections asinvariant. To do this, add their titlesto the list of Invariant Sections
in the Modified Version's license notice.

These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements’, provided it contains nothing but endorsements of
your Modified Version by various parties--for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as aBack-Cover Text, to the end of thelist of Cover Textsin the Modified Verson. Only one
passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf
of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all
of the Invariant Sections of al of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with asingle copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else aunique
number.

M ake the same adjustment to the section titlesin the list of Invariant Sections in the license notice
of the combined work.

229

In the combination, you must combine any sections entitled "History" in the various original
documents, forming one section entitled "History"; likewise combine any sections entitled
"Acknowledgements"', and any sections entitled "Dedications’. You must delete all sections entitled
"Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with asingle
copy that isincluded in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documentsin all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
Licensein all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on avolume of a storage or distribution medium, does not as a whole count as a
Modified Version of the Document, provided no compilation copyright is claimed for the
compilation. Such acompilation is called an "aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on account of their being thus
compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document's Cover Texts may be
placed on covers that surround only the Document within the aggregate.

Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Trandation is considered a kind of modification, so you may distribute trans ations of the Document
under the terms of section 4.

Replacing Invariant Sections with translations requires specia permission from their copyright
holders, but you may include tranglations of some or al Invariant Sections in addition to the
original versions of these Invariant Sections. You may include atranslation of this License
provided that you also include the original English version of thisLicense. In case of a
disagreement between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so

230

long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from timeto time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the Licenseis given adistinguishing version number. If the Document specifies that
aparticular numbered version of this License "or any later version" appliesto it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does not
specify aversion number of this License, you may choose any version ever published (not asa
draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in adocument you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (¢) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

A copy of the license isincluded in the section entitled "GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones
areinvariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-
Cover Textsbeing LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend rel easing these
examplesin parallel under your choice of free software license, such asthe GNU General Public
License, to permit their usein free software.

231

